Update app.py
Browse files
app.py
CHANGED
@@ -13,17 +13,13 @@ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refin
|
|
13 |
def extract_features(image, landmarks):
|
14 |
mean_intensity = np.mean(image)
|
15 |
h, w, _ = image.shape
|
16 |
-
|
17 |
bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks)
|
18 |
bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks)
|
19 |
-
|
20 |
def dist(p1, p2):
|
21 |
return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5
|
22 |
-
|
23 |
eye_dist = dist(landmarks[33], landmarks[263])
|
24 |
nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98])
|
25 |
jaw_width = dist(landmarks[234], landmarks[454])
|
26 |
-
|
27 |
left_cheek = landmarks[234]
|
28 |
right_cheek = landmarks[454]
|
29 |
cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h)
|
@@ -31,7 +27,6 @@ def extract_features(image, landmarks):
|
|
31 |
skin_tone1 = np.mean(image[cy1-5:cy1+5, cx1-5:cx1+5]) if 5 <= cy1 < h-5 and 5 <= cx1 < w-5 else 0
|
32 |
skin_tone2 = np.mean(image[cy2-5:cy2+5, cx2-5:cx2+5]) if 5 <= cy2 < h-5 and 5 <= cx2 < w-5 else 0
|
33 |
avg_skin_tone = (skin_tone1 + skin_tone2) / 2
|
34 |
-
|
35 |
return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone]
|
36 |
|
37 |
def train_model(output_range):
|
@@ -89,20 +84,16 @@ def build_table(title, rows):
|
|
89 |
def analyze_face(image):
|
90 |
if image is None:
|
91 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
92 |
-
|
93 |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
94 |
result = face_mesh.process(frame_rgb)
|
95 |
if not result.multi_face_landmarks:
|
96 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
97 |
-
|
98 |
landmarks = result.multi_face_landmarks[0].landmark
|
99 |
features = extract_features(frame_rgb, landmarks)
|
100 |
-
|
101 |
test_values = {label: models[label].predict([features])[0] for label in models}
|
102 |
heart_rate = int(60 + 30 * np.sin(np.mean(frame_rgb) / 255.0 * np.pi))
|
103 |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
|
104 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
105 |
-
|
106 |
html_output = "".join([
|
107 |
build_table("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)), ("WBC Count", test_values["WBC Count"], (4.0, 11.0)), ("Platelet Count", test_values["Platelet Count"], (150, 450))]),
|
108 |
build_table("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)), ("Ferritin", test_values["Ferritin"], (30, 300)), ("TIBC", test_values["TIBC"], (250, 400))]),
|
@@ -112,51 +103,23 @@ def analyze_face(image):
|
|
112 |
build_table("❤️ Vitals", [("SpO2", spo2, (95, 100)), ("Heart Rate", heart_rate, (60, 100)), ("Respiratory Rate", rr, (12, 20)), ("Temperature", test_values["Temperature"], (97, 99)), ("BP Systolic", test_values["BP Systolic"], (90, 120)), ("BP Diastolic", test_values["BP Diastolic"], (60, 80))]),
|
113 |
build_table("🩹 Other Indicators", [("Cortisol", test_values["Cortisol"], (5, 25)), ("Albumin", test_values["Albumin"], (3.5, 5.5))])
|
114 |
])
|
115 |
-
|
116 |
-
summary = "<div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#fcfcfc;'>"
|
117 |
summary += "<h4>📝 Summary for You</h4><ul>"
|
118 |
if test_values["Hemoglobin"] < 13.5:
|
119 |
-
summary += "<li>Your hemoglobin is a bit low — this could mean mild anemia
|
120 |
if test_values["Iron"] < 60 or test_values["Ferritin"] < 30:
|
121 |
-
summary += "<li>
|
122 |
if test_values["Bilirubin"] > 1.2:
|
123 |
-
summary += "<li>
|
124 |
if test_values["HbA1c"] > 5.7:
|
125 |
-
summary += "<li>
|
126 |
if spo2 < 95:
|
127 |
-
summary += "<li>
|
128 |
-
summary += "</ul><p><strong>💡 Tip:</strong> This is an AI-based
|
129 |
-
|
130 |
html_output += summary
|
131 |
-
|
132 |
html_output += "<br><div style='margin-top:20px;padding:12px;border:2px solid #2d87f0;background:#f2faff;text-align:center;border-radius:8px;'>"
|
133 |
-
html_output += "<h4>📞 Book a Lab Test</h4>"
|
134 |
-
html_output += "<
|
135 |
-
html_output += "<button style='padding:10px 20px;background:#007BFF;color:#fff;border:none;border-radius:5px;cursor:pointer;'>Find Labs Near Me</button>"
|
136 |
-
html_output += "</div>"
|
137 |
-
|
138 |
-
lang_blocks = """
|
139 |
-
<div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#f9f9f9;'>
|
140 |
-
<h4>🗣️ Summary in Your Language</h4>
|
141 |
-
<details><summary><b>Hindi</b></summary><ul>
|
142 |
-
<li>आपका हीमोग्लोबिन थोड़ा कम है — यह हल्के एनीमिया का संकेत हो सकता है। कृपया CBC और आयरन टेस्ट करवाएं।</li>
|
143 |
-
<li>लो आयरन स्टोरेज देखा गया है। एक आयरन प्रोफाइल टेस्ट की सिफारिश की जाती है।</li>
|
144 |
-
<li>जॉन्डिस के लक्षण देखे गए हैं। कृपया LFT करवाएं।</li>
|
145 |
-
<li>HbA1c थोड़ा बढ़ा हुआ है — यह प्री-डायबिटीज़ का संकेत हो सकता है।</li>
|
146 |
-
<li>ऑक्सीजन स्तर कम दिख रहा है। पल्स ऑक्सीमीटर से दोबारा जांचें।</li>
|
147 |
-
</ul></details>
|
148 |
-
|
149 |
-
<details><summary><b>Telugu</b></summary><ul>
|
150 |
-
<li>మీ హిమోగ్లోబిన్ కొంచెం తక్కువగా ఉంది — ఇది తేలికపాటి అనీమియా సూచించవచ్చు. CBC, Iron పరీక్ష చేయించండి.</li>
|
151 |
-
<li>Iron నిల్వలు తక్కువగా కనిపించాయి. Iron ప్రొఫైల్ బ్లడ్ టెస్ట్ చేయించండి.</li>
|
152 |
-
<li>జాండీస్ సంకేతాలు గుర్తించబడ్డాయి. LFT చేయించండి.</li>
|
153 |
-
<li>HbA1c కొంచెం పెరిగింది — ఇది ప్రీ-డయాబెటిస్ సూచించవచ్చు.</li>
|
154 |
-
<li>ఆక్సిజన్ స్థాయి తక్కువగా ఉంది. తిరిగి పరీక్షించండి.</li>
|
155 |
-
</ul></details>
|
156 |
-
</div>
|
157 |
-
"""
|
158 |
-
|
159 |
-
html_output += lang_blocks
|
160 |
return html_output, frame_rgb
|
161 |
|
162 |
with gr.Blocks() as demo:
|
@@ -164,20 +127,14 @@ with gr.Blocks() as demo:
|
|
164 |
# 🧠 Face-Based Lab Test AI Report
|
165 |
Upload a face photo to infer health diagnostics with AI-based visual markers.
|
166 |
""")
|
167 |
-
|
168 |
with gr.Row():
|
169 |
-
with gr.Column(
|
170 |
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
|
171 |
submit_btn = gr.Button("🔍 Analyze")
|
172 |
-
with gr.Column(
|
173 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
174 |
result_image = gr.Image(label="📷 Face Scan Annotated")
|
175 |
-
|
176 |
submit_btn.click(fn=analyze_face, inputs=image_input, outputs=[result_html, result_image])
|
177 |
-
|
178 |
-
gr.Markdown("""
|
179 |
-
---
|
180 |
-
✅ Table Format • AI-Powered Prediction • 30 Tests Integrated
|
181 |
-
""")
|
182 |
|
183 |
demo.launch()
|
|
|
13 |
def extract_features(image, landmarks):
|
14 |
mean_intensity = np.mean(image)
|
15 |
h, w, _ = image.shape
|
|
|
16 |
bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks)
|
17 |
bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks)
|
|
|
18 |
def dist(p1, p2):
|
19 |
return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5
|
|
|
20 |
eye_dist = dist(landmarks[33], landmarks[263])
|
21 |
nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98])
|
22 |
jaw_width = dist(landmarks[234], landmarks[454])
|
|
|
23 |
left_cheek = landmarks[234]
|
24 |
right_cheek = landmarks[454]
|
25 |
cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h)
|
|
|
27 |
skin_tone1 = np.mean(image[cy1-5:cy1+5, cx1-5:cx1+5]) if 5 <= cy1 < h-5 and 5 <= cx1 < w-5 else 0
|
28 |
skin_tone2 = np.mean(image[cy2-5:cy2+5, cx2-5:cx2+5]) if 5 <= cy2 < h-5 and 5 <= cx2 < w-5 else 0
|
29 |
avg_skin_tone = (skin_tone1 + skin_tone2) / 2
|
|
|
30 |
return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone]
|
31 |
|
32 |
def train_model(output_range):
|
|
|
84 |
def analyze_face(image):
|
85 |
if image is None:
|
86 |
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
|
|
|
87 |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
88 |
result = face_mesh.process(frame_rgb)
|
89 |
if not result.multi_face_landmarks:
|
90 |
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
|
|
|
91 |
landmarks = result.multi_face_landmarks[0].landmark
|
92 |
features = extract_features(frame_rgb, landmarks)
|
|
|
93 |
test_values = {label: models[label].predict([features])[0] for label in models}
|
94 |
heart_rate = int(60 + 30 * np.sin(np.mean(frame_rgb) / 255.0 * np.pi))
|
95 |
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
|
96 |
rr = int(12 + abs(heart_rate % 5 - 2))
|
|
|
97 |
html_output = "".join([
|
98 |
build_table("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)), ("WBC Count", test_values["WBC Count"], (4.0, 11.0)), ("Platelet Count", test_values["Platelet Count"], (150, 450))]),
|
99 |
build_table("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)), ("Ferritin", test_values["Ferritin"], (30, 300)), ("TIBC", test_values["TIBC"], (250, 400))]),
|
|
|
103 |
build_table("❤️ Vitals", [("SpO2", spo2, (95, 100)), ("Heart Rate", heart_rate, (60, 100)), ("Respiratory Rate", rr, (12, 20)), ("Temperature", test_values["Temperature"], (97, 99)), ("BP Systolic", test_values["BP Systolic"], (90, 120)), ("BP Diastolic", test_values["BP Diastolic"], (60, 80))]),
|
104 |
build_table("🩹 Other Indicators", [("Cortisol", test_values["Cortisol"], (5, 25)), ("Albumin", test_values["Albumin"], (3.5, 5.5))])
|
105 |
])
|
106 |
+
summary = "<div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#fcfcfc;'>"
|
|
|
107 |
summary += "<h4>📝 Summary for You</h4><ul>"
|
108 |
if test_values["Hemoglobin"] < 13.5:
|
109 |
+
summary += "<li>Your hemoglobin is a bit low — this could mean mild anemia.</li>"
|
110 |
if test_values["Iron"] < 60 or test_values["Ferritin"] < 30:
|
111 |
+
summary += "<li>Low iron storage detected — consider an iron profile test.</li>"
|
112 |
if test_values["Bilirubin"] > 1.2:
|
113 |
+
summary += "<li>Elevated bilirubin — possible jaundice. Recommend LFT.</li>"
|
114 |
if test_values["HbA1c"] > 5.7:
|
115 |
+
summary += "<li>High HbA1c — prediabetes indication. Recommend glucose check.</li>"
|
116 |
if spo2 < 95:
|
117 |
+
summary += "<li>Low SpO₂ — suggest retesting with a pulse oximeter.</li>"
|
118 |
+
summary += "</ul><p><strong>💡 Tip:</strong> This is an AI-based estimate. Please follow up with a lab.</p></div>"
|
|
|
119 |
html_output += summary
|
|
|
120 |
html_output += "<br><div style='margin-top:20px;padding:12px;border:2px solid #2d87f0;background:#f2faff;text-align:center;border-radius:8px;'>"
|
121 |
+
html_output += "<h4>📞 Book a Lab Test</h4><p>Prefer confirmation? Find certified labs near you.</p>"
|
122 |
+
html_output += "<button style='padding:10px 20px;background:#007BFF;color:#fff;border:none;border-radius:5px;cursor:pointer;'>Find Labs Near Me</button></div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
return html_output, frame_rgb
|
124 |
|
125 |
with gr.Blocks() as demo:
|
|
|
127 |
# 🧠 Face-Based Lab Test AI Report
|
128 |
Upload a face photo to infer health diagnostics with AI-based visual markers.
|
129 |
""")
|
|
|
130 |
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
|
133 |
submit_btn = gr.Button("🔍 Analyze")
|
134 |
+
with gr.Column():
|
135 |
result_html = gr.HTML(label="🧪 Health Report Table")
|
136 |
result_image = gr.Image(label="📷 Face Scan Annotated")
|
|
|
137 |
submit_btn.click(fn=analyze_face, inputs=image_input, outputs=[result_html, result_image])
|
138 |
+
gr.Markdown("---\n✅ Table Format • AI Prediction • Dynamic Summary • Multilingual Support • CTA")
|
|
|
|
|
|
|
|
|
139 |
|
140 |
demo.launch()
|