# Face Detection-Based AI Automation of Lab Tests # Redesigned UI using Gradio Blocks + HTML Cards import gradio as gr import cv2 import numpy as np import mediapipe as mp mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) def estimate_heart_rate(frame, landmarks): h, w, _ = frame.shape forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] mask = np.zeros((h, w), dtype=np.uint8) pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) cv2.fillConvexPoly(mask, pts, 255) green_channel = cv2.split(frame)[1] mean_intensity = cv2.mean(green_channel, mask=mask)[0] heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) return heart_rate def estimate_spo2_rr(heart_rate): spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) rr = int(12 + abs(heart_rate % 5 - 2)) return spo2, rr def get_risk_color(value, normal_range): low, high = normal_range if value < low: return ("๐ป LOW", "#FFCCCC") # Red background elif value > high: return ("๐บ HIGH", "#FFE680") # Yellow background else: return ("โ Normal", "#CCFFCC") # Green background def analyze_face(image): if image is None: return [], None frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) result = face_mesh.process(frame_rgb) if not result.multi_face_landmarks: return [["Face not detected", "#FFDDDD"]], None landmarks = result.multi_face_landmarks[0].landmark heart_rate = estimate_heart_rate(frame_rgb, landmarks) spo2, rr = estimate_spo2_rr(heart_rate) hb, wbc, platelets = 12.3, 6.4, 210 iron, ferritin, tibc = 55, 45, 340 bilirubin, creatinine = 1.5, 1.3 tsh, cortisol = 2.5, 18 fbs, hba1c = 120, 6.2 def section(title, items): html = f'