# Face Detection-Based AI Automation of Lab Tests # UI: Clean table, multilingual summary, PDF-ready import gradio as gr import cv2 import numpy as np import mediapipe as mp from fpdf import FPDF import os mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) def estimate_heart_rate(frame, landmarks): h, w, _ = frame.shape forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] mask = np.zeros((h, w), dtype=np.uint8) pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) cv2.fillConvexPoly(mask, pts, 255) green_channel = cv2.split(frame)[1] mean_intensity = cv2.mean(green_channel, mask=mask)[0] heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) return heart_rate def estimate_spo2_rr(heart_rate): spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) rr = int(12 + abs(heart_rate % 5 - 2)) return spo2, rr def get_risk_color(value, normal_range): low, high = normal_range if value < low: return ("Low", "🔻", "#FFCCCC") elif value > high: return ("High", "🔺", "#FFE680") else: return ("Normal", "✅", "#CCFFCC") def generate_pdf_report(image, results_dict, summary_text): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", "B", 16) pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') if image is not None: img_path = "patient_face.jpg" cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) pdf.image(img_path, x=80, y=25, w=50) os.remove(img_path) pdf.ln(60) pdf.set_font("Arial", "B", 12) pdf.cell(0, 10, "Results Summary", ln=True) pdf.set_font("Arial", "", 10) for key, val in results_dict.items(): if isinstance(val, (int, float)): pdf.cell(0, 8, f"{key}: {val}", ln=True) pdf.ln(5) pdf.set_font("Arial", "B", 12) pdf.cell(0, 10, "AI Summary (English)", ln=True) pdf.set_font("Arial", "", 10) for line in summary_text.split("
  • "): if "
  • " in line: clean = line.split("")[0].strip() pdf.multi_cell(0, 8, f"- {clean}") output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf" pdf.output(output_path) return output_path