import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score import joblib # Generate synthetic training data for Hemoglobin model np.random.seed(42) size = 200 data = { "mean_intensity": np.random.uniform(0.2, 0.5, size), "bbox_width": np.random.uniform(0.05, 0.2, size), "bbox_height": np.random.uniform(0.05, 0.2, size), "eye_dist": np.random.uniform(0.2, 0.5, size), "nose_len": np.random.uniform(0.2, 0.5, size), "jaw_width": np.random.uniform(0.2, 0.5, size), "avg_skin_tone": np.random.uniform(0.2, 0.5, size), "hemoglobin": np.random.uniform(10.5, 17.5, size) # realistic Hb range } df = pd.DataFrame(data) # Save dataset df.to_csv("hemoglobin_dataset.csv", index=False) # Train-test split X = df.drop(columns=["hemoglobin"]) y = df["hemoglobin"] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train model model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train, y_train) # Evaluate y_pred = model.predict(X_test) print("R2 Score:", r2_score(y_test, y_pred)) # Save model joblib.dump(model, "hemoglobin_model.pkl") print("Model saved as hemoglobin_model.pkl")