Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
|
8 |
+
# App title and instructions
|
9 |
+
st.set_page_config(page_title="Skin Condition Classifier", layout="centered")
|
10 |
+
st.title("🧠 AI Skin Condition Classifier")
|
11 |
+
st.markdown("Upload a **clear photo** of the skin condition to receive AI-powered predictions.")
|
12 |
+
|
13 |
+
# Image uploader
|
14 |
+
uploaded_file = st.file_uploader("📷 Upload a skin image", type=["jpg", "jpeg", "png"])
|
15 |
+
|
16 |
+
# Load the pre-trained model
|
17 |
+
@st.cache_resource
|
18 |
+
def load_model():
|
19 |
+
model_name = "Anwarkh1/Skin_Cancer-Image_Classification"
|
20 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
21 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
22 |
+
return processor, model
|
23 |
+
|
24 |
+
processor, model = load_model()
|
25 |
+
|
26 |
+
# Handle image upload and prediction
|
27 |
+
if uploaded_file is not None:
|
28 |
+
image = Image.open(uploaded_file).convert("RGB")
|
29 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
30 |
+
|
31 |
+
inputs = processor(images=image, return_tensors="pt")
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(**inputs)
|
34 |
+
|
35 |
+
logits = outputs.logits
|
36 |
+
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
37 |
+
|
38 |
+
# Top 3 predictions
|
39 |
+
top_probs, top_indices = torch.topk(probs, k=3)
|
40 |
+
class_labels = model.config.id2label
|
41 |
+
|
42 |
+
st.subheader("🧾 Prediction Results")
|
43 |
+
for idx, prob in zip(top_indices, top_probs):
|
44 |
+
label = class_labels[idx.item()]
|
45 |
+
st.write(f"**{label}** – {prob.item() * 100:.2f}%")
|
46 |
+
|
47 |
+
st.info("🔍 Note: This tool is for supportive use only. Please consult a dermatologist for a medical diagnosis.")
|