# app.py import streamlit as st from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForImageClassification # App title and instructions st.set_page_config(page_title="Skin Condition Classifier", layout="centered") st.title("๐Ÿง  AI Skin Condition Classifier") st.markdown("Upload a **clear photo** of the skin condition to receive AI-powered predictions.") # Image uploader uploaded_file = st.file_uploader("๐Ÿ“ท Upload a skin image", type=["jpg", "jpeg", "png"]) # Load the pre-trained model @st.cache_resource def load_model(): model_name = "Anwarkh1/Skin_Cancer-Image_Classification" processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) return processor, model processor, model = load_model() # Handle image upload and prediction if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1)[0] # Top 3 predictions top_probs, top_indices = torch.topk(probs, k=3) class_labels = model.config.id2label st.subheader("๐Ÿงพ Prediction Results") for idx, prob in zip(top_indices, top_probs): label = class_labels[idx.item()] st.write(f"**{label}** โ€“ {prob.item() * 100:.2f}%") st.info("๐Ÿ” Note: This tool is for supportive use only. Please consult a dermatologist for a medical diagnosis.")