Spaces:
Sleeping
Sleeping
File size: 9,294 Bytes
ce4a4e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import os
import openai
import time
import wikipedia
import random
import re
import requests
from bs4 import BeautifulSoup
import os
import glob
from natsort import natsorted
import requests
from bs4 import BeautifulSoup
import xml.etree.ElementTree as ET
from pytrials.client import ClinicalTrials
from Bio import Entrez
import pandas as pd
import numpy as np
import time
#from langchain.agents import create_pandas_dataframe_agent
from langchain_experimental.agents import create_pandas_dataframe_agent
#from langchain.llms import OpenAI
from langchain_community.llms import OpenAI
# APIキーの設定
openai.api_key = os.environ['OPENAI_API_KEY']
gptengine="gpt-3.5-turbo"
"""def get_selected_fileds(texts):
ct = ClinicalTrials()
input_name = texts.replace(' ' , "+")
corona_fields = ct.get_study_fields(
search_expr="%s SEARCH[Location](AREA[LocationCountry]Japan AND AREA[LocationStatus]Recruiting)"%(input_name),
fields=["NCTId", "Condition", "BriefTitle",'BriefSummary','EligibilityCriteria'],
max_studies=500,
fmt="csv")
return corona_fields"""
def get_retriever_str(fields):
retriever_str=''
for i in range(1,len(fields)):
colnames = fields[0]
targetCol = fields[i]
for f in range(len(fields[0])):
retriever_str+=colnames[f] + ":" + targetCol[f] +"\n"
retriever_str+='\n'
return retriever_str
def get_chanked_retriever(fields):
retriever_list =[]
for i in range(1,len(fields)):
retriever_str=''
colnames = fields[0]
targetCol = fields[i]
for f in range(len(fields[0])):
retriever_str+=colnames[f] + ":" + targetCol[f] +"\n"
retriever_list.append(retriever_str)
return retriever_list
from pytrials.client import ClinicalTrials
def get_selected_fields(texts, split_criteria=False,
split_word_number = False, split_number=700):
ct = ClinicalTrials()
input_name = texts.replace(' ', "+")
corona_fields = ct.get_study_fields(
search_expr="%s SEARCH[Location](AREA[LocationCountry]Japan AND AREA[LocationStatus]Recruiting)" % (input_name),
fields=["NCTId", "Condition", "BriefTitle", 'BriefSummary', 'EligibilityCriteria'],
max_studies=500,
fmt="csv")
if split_criteria:
new_fields = []
# 検索対象の文字列
target_string1 = 'Exclusion Criteria'
target_string2 = 'Exclusion criteria'
# 各要素で検索対象の文字列を探し、直前で分割して新しいリストに格納
for corona_field in corona_fields:
new_list = []
for item in corona_field:
if target_string1 in item:
split_position = item.index(target_string1)
new_list.append(item[:split_position])
new_list.append(item[split_position:])
elif target_string2 in item:
split_position = item.index(target_string2)
new_list.append(item[:split_position])
new_list.append(item[split_position:])
else:
new_list.append(item)
new_fields.append(new_list)
else:
new_fields = corona_fields
if split_word_number:
split_fields = []
for new_field in new_fields:
new_list= []
# 各要素を調べて、700文字以上であれば分割し、新しいリストに格納
for item in new_field:
item_length = len(item)
if item_length > split_number:
num_parts = -(-item_length // split_number) # 向上の除算を用いて分割数を計算
for i in range(num_parts):
start_index = i * split_number
end_index = min((i + 1) * split_number, item_length) # 文字列の終わりを超えないように調整
new_list.append(item[start_index:end_index])
else:
new_list.append(item)
split_fields.append(new_list)
new_fields = split_fields
return new_fields
def print_agent_results(df, Ids,
interesteds = ['Condition', 'BriefTitle', 'BriefSummary', 'EligibilityCriteria'],
translater=None):
results = ""
for Id in Ids:
print("%s\n"%Id)
sdf = df[df['NCTId'] == Id]
for interested in interesteds:
# 最初の要素を取得
results += '%s: \n %s \n' % (interested, sdf[interested].iloc[0])
#print('%s: \n %s \n' % (interested, sdf[interested].iloc[0]))
if translater:
to_be_printed = translater.translate(results)
else:
to_be_printed =results
print(to_be_printed)
def search(query):
Entrez.email = os.getenv('MAIL_ADRESS')
#Entrez.email='[email protected]'
handle = Entrez.esearch(db='pubmed',
sort = 'relevance',
retmax = '20',
retmode = 'xml',
term = query)
results = Entrez.read(handle)
return results
def fetch_details(id_list):
ids = ','.join(id_list)
Entrez.email = os.getenv('MAIL_ADRESS')
#Entrez.email = '[email protected]'
handle = Entrez.efetch(db = 'pubmed',
retmode = 'xml',
id = ids)
results = Entrez.read(handle)
return results
'''def generate(prompt,engine=None):
if engine is None:
engine=gptengine
while True: #OpenAI APIが落ちてる時に無限リトライするので注意
try:
response = openai.ChatCompletion.create(
model=engine,
messages=[
{"role": "system", "content": "You are useful assistant"},
{"role": "user", "content":prompt},
]
)
result=response["choices"][0]["message"]["content"]
return result
except Exception as e:
print(e)
print("リトライ")
time.sleep(30)
pass
'''
def generate(prompt,engine=None):
if engine is None:
engine=gptengine
while True: #OpenAI APIが落ちてる時に無限リトライするので注意
try:
response = openai.chat.completions.create(
model=engine,
messages=[
{"role": "system", "content": "You are useful assistant"},
{"role": "user", "content":prompt},
]
)
#result=response["choices"][0]["message"]["content"]
result=response.choices[0].message.content
return result
except Exception as e:
print(e)
print("リトライ")
time.sleep(30)
pass
def GetPubmedSummaryDf(studies):
title_list= []
abstract_list=[]
journal_list = []
language_list =[]
pubdate_year_list = []
pubdate_month_list = []
studiesIdList = studies['IdList']
chunk_size = 10000
for chunk_i in range(0, len(studiesIdList), chunk_size):
chunk = studiesIdList[chunk_i:chunk_i + chunk_size]
try:
papers = fetch_details(chunk)
for i, paper in enumerate(papers['PubmedArticle']):
title_list.append(paper['MedlineCitation']['Article']['ArticleTitle'])
try:
abstract_list.append(paper['MedlineCitation']['Article']['Abstract']['AbstractText'][0])
except:
abstract_list.append('No Abstract')
journal_list.append(paper['MedlineCitation']['Article']['Journal']['Title'])
language_list.append(paper['MedlineCitation']['Article']['Language'][0])
try:
pubdate_year_list.append(paper['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Year'])
except:
pubdate_year_list.append('No Data')
try:
pubdate_month_list.append(paper['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Month'])
except:
pubdate_month_list.append('No Data')
except: # occasionally a chunk might annoy your parser
pass
df = pd.DataFrame(list(zip(
title_list, abstract_list, journal_list, language_list, pubdate_year_list,
pubdate_month_list)),
columns=['Title', 'Abstract', 'Journal', 'Language', 'Year','Month'])
return df, abstract_list
def ClinicalAgent(fileds, verbose=False):
df = pd.DataFrame.from_records(fileds[1:], columns=fileds[0])
return create_pandas_dataframe_agent(OpenAI(temperature=0, model='gpt-3.5-turbo-16k'), df, verbose=verbose)
def GetNCTID(results):
# NCTで始まる単語を検索する正規表現
pattern = r'\bNCT\d+\b'
# 正規表現を使って単語を抽出
nct_words = re.findall(pattern,results)
return nct_words |