File size: 7,763 Bytes
6aa59d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7866\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7866/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fetching data from: https://clinicaltrials.gov/api/v2/studies?query.titles=glioma SEARCH[Location](AREA[LocationCountry]Japan AND AREA[LocationStatus]Recruiting)&pageSize=100\n"
     ]
    }
   ],
   "source": [
    "import gradio as gr\n",
    "import pandas as pd\n",
    "from OpenAITools.FetchTools import fetch_clinical_trials\n",
    "from langchain_openai import ChatOpenAI\n",
    "from langchain_groq import ChatGroq\n",
    "from OpenAITools.CrinicalTrialTools import SimpleClinicalTrialAgent, GraderAgent, LLMTranslator, generate_ex_question_English\n",
    "\n",
    "# モデルとエージェントの初期化\n",
    "groq = ChatGroq(model_name=\"llama3-70b-8192\", temperature=0)\n",
    "translator = LLMTranslator(groq)\n",
    "CriteriaCheckAgent = SimpleClinicalTrialAgent(groq)\n",
    "grader_agent = GraderAgent(groq)\n",
    "\n",
    "# データフレームを生成する関数\n",
    "def generate_dataframe(age, sex, tumor_type, GeneMutation, Meseable, Biopsiable):\n",
    "    # 日本語の腫瘍タイプを英語に翻訳\n",
    "    TumorName = translator.translate(tumor_type)\n",
    "\n",
    "    # 質問文を生成\n",
    "    ex_question = generate_ex_question_English(age, sex, TumorName, GeneMutation, Meseable, Biopsiable)\n",
    "    \n",
    "    # 臨床試験データの取得\n",
    "    df = fetch_clinical_trials(TumorName)\n",
    "    df['AgentJudgment'] = None\n",
    "    df['AgentGrade'] = None\n",
    "    \n",
    "    # 臨床試験の適格性の評価\n",
    "    NCTIDs = list(df['NCTID'])\n",
    "    progress = gr.Progress(track_tqdm=True)\n",
    "    for i, nct_id in enumerate(NCTIDs):\n",
    "        target_criteria = df.loc[df['NCTID'] == nct_id, 'Eligibility Criteria'].values[0]\n",
    "        agent_judgment = CriteriaCheckAgent.evaluate_eligibility(target_criteria, ex_question)\n",
    "        agent_grade = grader_agent.evaluate_eligibility(agent_judgment)\n",
    "        \n",
    "        # データフレームの更新\n",
    "        df.loc[df['NCTID'] == nct_id, 'AgentJudgment'] = agent_judgment\n",
    "        df.loc[df['NCTID'] == nct_id, 'AgentGrade'] = agent_grade\n",
    "        progress((i + 1) / len(NCTIDs))\n",
    "    \n",
    "    # 列を指定した順に並び替え\n",
    "    columns_order = ['NCTID', 'AgentGrade', 'Title', 'AgentJudgment', 'Japanes Locations', \n",
    "                     'Primary Completion Date', 'Cancer', 'Summary', 'Eligibility Criteria']\n",
    "    df = df[columns_order]\n",
    "        \n",
    "    return df, df  # フィルタ用と表示用にデータフレームを返す\n",
    "\n",
    "# 特定のAgentGrade(yes, no, unclear)に基づいて行をフィルタリングする関数\n",
    "def filter_rows_by_grade(original_df, grade):\n",
    "    df_filtered = original_df[original_df['AgentGrade'] == grade]\n",
    "    return df_filtered, df_filtered\n",
    "\n",
    "# CSVとして保存しダウンロードする関数\n",
    "def download_filtered_csv(df):\n",
    "    file_path = \"filtered_data.csv\"\n",
    "    df.to_csv(file_path, index=False)\n",
    "    return file_path\n",
    "\n",
    "# 全体結果をCSVとして保存しダウンロードする関数\n",
    "def download_full_csv(df):\n",
    "    file_path = \"full_data.csv\"\n",
    "    df.to_csv(file_path, index=False)\n",
    "    return file_path\n",
    "\n",
    "# Gradioインターフェースの作成\n",
    "with gr.Blocks() as demo:\n",
    "    gr.Markdown(\"## 臨床試験適格性評価インターフェース\")\n",
    "\n",
    "    # 各種入力フィールド\n",
    "    age_input = gr.Textbox(label=\"Age\", placeholder=\"例: 65\")\n",
    "    sex_input = gr.Dropdown(choices=[\"男性\", \"女性\"], label=\"Sex\")\n",
    "    tumor_type_input = gr.Textbox(label=\"Tumor Type\", placeholder=\"例: gastric cancer, 日本でも良いですが英語の方が精度が高いです。\")\n",
    "    gene_mutation_input = gr.Textbox(label=\"Gene Mutation\", placeholder=\"例: HER2\")\n",
    "    measurable_input = gr.Dropdown(choices=[\"有り\", \"無し\", \"不明\"], label=\"Measurable Tumor\")\n",
    "    biopsiable_input = gr.Dropdown(choices=[\"有り\", \"無し\", \"不明\"], label=\"Biopsiable Tumor\")\n",
    "\n",
    "    # データフレーム表示エリア\n",
    "    dataframe_output = gr.DataFrame()\n",
    "    original_df = gr.State()\n",
    "    filtered_df = gr.State()\n",
    "\n",
    "    # データフレーム生成ボタン\n",
    "    generate_button = gr.Button(\"Generate Clinical Trials Data\")\n",
    "\n",
    "    # フィルタリングボタン\n",
    "    yes_button = gr.Button(\"Show Eligible Trials\")\n",
    "    no_button = gr.Button(\"Show Ineligible Trials\")\n",
    "    unclear_button = gr.Button(\"Show Unclear Trials\")\n",
    "    \n",
    "    # ダウンロードボタン\n",
    "    download_filtered_button = gr.Button(\"Download Filtered Data\")\n",
    "    download_filtered_output = gr.File(label=\"Download Filtered Data\")\n",
    "\n",
    "    download_full_button = gr.Button(\"Download Full Data\")\n",
    "    download_full_output = gr.File(label=\"Download Full Data\")\n",
    "\n",
    "\n",
    "    # ボタン動作の設定\n",
    "    generate_button.click(fn=generate_dataframe, inputs=[age_input, sex_input, tumor_type_input, gene_mutation_input, measurable_input, biopsiable_input], outputs=[dataframe_output, original_df])\n",
    "    yes_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State(\"yes\")], outputs=[dataframe_output, filtered_df])\n",
    "    no_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State(\"no\")], outputs=[dataframe_output, filtered_df])\n",
    "    unclear_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State(\"unclear\")], outputs=[dataframe_output, filtered_df])\n",
    "    download_filtered_button.click(fn=download_filtered_csv, inputs=filtered_df, outputs=download_filtered_output)\n",
    "    download_full_button.click(fn=download_full_csv, inputs=original_df, outputs=download_full_output)\n",
    "\n",
    "\n",
    "# インターフェースの起動\n",
    "demo.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "gradio",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}