Spaces:
Running
Running
File size: 10,187 Bytes
9754890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/yw/qz00x75d7kb98f7vm8dkhkvw0000gn/T/ipykernel_57352/998829134.py:6: LangChainDeprecationWarning: As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. The langchain_core.pydantic_v1 module was a compatibility shim for pydantic v1, and should no longer be used. Please update the code to import from Pydantic directly.\n",
"\n",
"For example, replace imports like: `from langchain_core.pydantic_v1 import BaseModel`\n",
"with: `from pydantic import BaseModel`\n",
"or the v1 compatibility namespace if you are working in a code base that has not been fully upgraded to pydantic 2 yet. \tfrom pydantic.v1 import BaseModel\n",
"\n",
" from OpenAITools.CrinicalTrialTools import SimpleClinicalTrialAgent, GraderAgent, LLMTranslator, generate_ex_question_English\n",
"/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/transformers/tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7861\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/yw/qz00x75d7kb98f7vm8dkhkvw0000gn/T/ipykernel_57352/998829134.py:29: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df['AgentJudgment'] = None\n",
"/var/folders/yw/qz00x75d7kb98f7vm8dkhkvw0000gn/T/ipykernel_57352/998829134.py:30: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df['AgentGrade'] = None\n"
]
}
],
"source": [
"import gradio as gr\n",
"import pandas as pd\n",
"from OpenAITools.FetchTools import fetch_clinical_trials\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain_groq import ChatGroq\n",
"from OpenAITools.CrinicalTrialTools import SimpleClinicalTrialAgent, GraderAgent, LLMTranslator, generate_ex_question_English\n",
"from OpenAITools.JRCTTools import get_matched_df,GetJRCTCriteria\n",
"from sentence_transformers import SentenceTransformer\n",
"from sentence_transformers import util\n",
"\n",
"# モデルとエージェントの初期化\n",
"groq = ChatGroq(model_name=\"llama3-70b-8192\", temperature=0)\n",
"translator = LLMTranslator(groq)\n",
"CriteriaCheckAgent = SimpleClinicalTrialAgent(groq)\n",
"grader_agent = GraderAgent(groq)\n",
"selectionModel = SentenceTransformer('pritamdeka/S-PubMedBert-MS-MARCO')\n",
"\n",
"# データフレームを生成する関数\n",
"def generate_dataframe(age, sex, tumor_type, GeneMutation, Meseable, Biopsiable):\n",
" # 日本語の腫瘍タイプを英語に翻訳\n",
" TumorName = translator.translate(tumor_type)\n",
"\n",
" # 質問文を生成\n",
" ex_question = generate_ex_question_English(age, sex, TumorName, GeneMutation, Meseable, Biopsiable)\n",
" \n",
" # 臨床試験データの取得\n",
" basedf = pd.read_csv(\"../ClinicalTrialCSV/JRCT20241215CancerPost.csv\", index_col=0)\n",
" df = get_matched_df(basedf=basedf, query=TumorName, model=selectionModel, threshold=0.925)\n",
" df['AgentJudgment'] = None\n",
" df['AgentGrade'] = None\n",
" \n",
" # 臨床試験の適格性の評価\n",
" progress = gr.Progress(track_tqdm=True)\n",
" for i in range(len(df)):\n",
" TargetCriteria = GetJRCTCriteria(df, i)\n",
" AgentJudgment = CriteriaCheckAgent.evaluate_eligibility(TargetCriteria, ex_question)\n",
" AgentGrade = grader_agent.evaluate_eligibility(AgentJudgment)\n",
" # df.locを使って値を代入(行・列名で指定)\n",
" df.loc[df.index[i], 'AgentJudgment'] = AgentJudgment\n",
" df.loc[df.index[i], 'AgentGrade'] = AgentGrade\n",
" progress((i + 1) / len(df))\n",
" \n",
" # 列を指定した順に並び替え\n",
" columns_order = ['JRCT ID', 'Title', '研究・治験の目的','AgentJudgment', 'AgentGrade','主たる選択基準', '主たる除外基準','Inclusion Criteria','Exclusion Criteria','NCT No', 'JapicCTI No']\n",
" df = df[columns_order]\n",
" \n",
" return df, df # フィルタ用と表示用にデータフレームを返す\n",
"\n",
"# 特定のAgentGrade(yes, no, unclear)に基づいて行をフィルタリングする関数\n",
"def filter_rows_by_grade(original_df, grade):\n",
" df_filtered = original_df[original_df['AgentGrade'] == grade]\n",
" return df_filtered, df_filtered\n",
"\n",
"# CSVとして保存しダウンロードする関数\n",
"def download_filtered_csv(df):\n",
" file_path = \"filtered_data.csv\"\n",
" df.to_csv(file_path, index=False)\n",
" return file_path\n",
"\n",
"# 全体結果をCSVとして保存しダウンロードする関数\n",
"def download_full_csv(df):\n",
" file_path = \"full_data.csv\"\n",
" df.to_csv(file_path, index=False)\n",
" return file_path\n",
"\n",
"# Gradioインターフェースの作成\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(\"## 臨床試験適格性評価インターフェース\")\n",
"\n",
" # 各種入力フィールド\n",
" age_input = gr.Textbox(label=\"Age\", placeholder=\"例: 65\")\n",
" sex_input = gr.Dropdown(choices=[\"男性\", \"女性\"], label=\"Sex\")\n",
" tumor_type_input = gr.Textbox(label=\"Tumor Type\", placeholder=\"例: gastric cancer, 日本でも良いですが英語の方が精度が高いです。\")\n",
" gene_mutation_input = gr.Textbox(label=\"Gene Mutation\", placeholder=\"例: HER2\")\n",
" measurable_input = gr.Dropdown(choices=[\"有り\", \"無し\", \"不明\"], label=\"Measurable Tumor\")\n",
" biopsiable_input = gr.Dropdown(choices=[\"有り\", \"無し\", \"不明\"], label=\"Biopsiable Tumor\")\n",
"\n",
" # データフレーム表示エリア\n",
" dataframe_output = gr.DataFrame()\n",
" original_df = gr.State()\n",
" filtered_df = gr.State()\n",
"\n",
" # データフレーム生成ボタン\n",
" generate_button = gr.Button(\"Generate Clinical Trials Data\")\n",
"\n",
" # フィルタリングボタン\n",
" yes_button = gr.Button(\"Show Eligible Trials\")\n",
" no_button = gr.Button(\"Show Ineligible Trials\")\n",
" unclear_button = gr.Button(\"Show Unclear Trials\")\n",
" \n",
" # ダウンロードボタン\n",
" download_filtered_button = gr.Button(\"Download Filtered Data\")\n",
" download_filtered_output = gr.File(label=\"Download Filtered Data\")\n",
"\n",
" download_full_button = gr.Button(\"Download Full Data\")\n",
" download_full_output = gr.File(label=\"Download Full Data\")\n",
"\n",
"\n",
" # ボタン動作の設定\n",
" generate_button.click(fn=generate_dataframe, inputs=[age_input, sex_input, tumor_type_input, gene_mutation_input, measurable_input, biopsiable_input], outputs=[dataframe_output, original_df])\n",
" yes_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State(\"yes\")], outputs=[dataframe_output, filtered_df])\n",
" no_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State(\"no\")], outputs=[dataframe_output, filtered_df])\n",
" unclear_button.click(fn=filter_rows_by_grade, inputs=[original_df, gr.State(\"unclear\")], outputs=[dataframe_output, filtered_df])\n",
" download_filtered_button.click(fn=download_filtered_csv, inputs=filtered_df, outputs=download_filtered_output)\n",
" download_full_button.click(fn=download_full_csv, inputs=original_df, outputs=download_full_output)\n",
"\n",
"\n",
"# インターフェースの起動\n",
"demo.launch()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "gradio",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|