Spaces:
Sleeping
Sleeping
File size: 4,731 Bytes
6aa59d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/IPython/core/interactiveshell.py:3577: LangChainDeprecationWarning: As of langchain-core 0.3.0, LangChain uses pydantic v2 internally. The langchain_core.pydantic_v1 module was a compatibility shim for pydantic v1, and should no longer be used. Please update the code to import from Pydantic directly.\n",
"\n",
"For example, replace imports like: `from langchain_core.pydantic_v1 import BaseModel`\n",
"with: `from pydantic import BaseModel`\n",
"or the v1 compatibility namespace if you are working in a code base that has not been fully upgraded to pydantic 2 yet. \tfrom pydantic.v1 import BaseModel\n",
"\n",
" exec(code_obj, self.user_global_ns, self.user_ns)\n"
]
}
],
"source": [
"from langchain_community.agent_toolkits import create_sql_agent\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain_groq import ChatGroq\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"import pandas as pd\n",
"from pydantic import BaseModel, Field\n",
"\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.vectorstores import Chroma\n",
"from langchain.embeddings import HuggingFaceEmbeddings\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"\n",
"\n",
"gpt = ChatOpenAI(model=\"gpt-3.5-turbo\", temperature=0)\n",
"#agent_gpt_executor = create_sql_agent(gpt, db=db, agent_type=\"tool-calling\", verbose=True)\n",
"\n",
"## make database\n",
"from langchain_community.utilities import SQLDatabase\n",
"from sqlalchemy import create_engine\n",
"\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import SystemMessage\n",
"from langchain_core.prompts import MessagesPlaceholder\n",
"#agent_groq_executor = create_sql_agent(llm, db=db, agent_type=\"tool-calling\", verbose=True)\n",
"\n",
"from OpenAITools.FetchTools import fetch_clinical_trials, fetch_clinical_trials_jp\n",
"from OpenAITools.CrinicalTrialTools import QuestionModifierEnglish, TumorNameExtractor, SimpleClinicalTrialAgent,GraderAgent,LLMTranslator\n",
"\n",
"groq = ChatGroq(model_name=\"llama3-70b-8192\", temperature=0)\n",
"#agent_groq_executor = create_sql_agent(groq, db=db, agent_type=\"tool-calling\", verbose=True)\n",
"\n",
"age = \"65\"\n",
"sex =\"η·ζ§\"\n",
"tumor_type =\"θη\"\n",
"#tumor_type = \"gastric cancer\"\n",
"GeneMutation =\"HER2\"\n",
"Meseable = \"ζγ\"\n",
"Biopsiable = \"ζγ\"\n",
"NCTID = 'NCT06441994'\n",
"\n",
"#Define extractor\n",
"Translator = LLMTranslator(groq)\n",
"TumorName = Translator.translate(tumor_type)\n",
"\n",
"#Make db\n",
"df = fetch_clinical_trials(TumorName)\n",
"# ζ°γγεγθΏ½ε \n",
"df['AgentJudgment'] = None\n",
"df['AgentGrade'] = None\n",
"#df = df.iloc[:5, :]\n",
"NCTIDs = list(df['NCTID' ])\n",
"\n",
"#Define agents\n",
"#modifier = QuestionModifierEnglish(groq)\n",
"CriteriaCheckAgent = SimpleClinicalTrialAgent(groq)\n",
"grader_agent = GraderAgent(groq)\n",
"\n",
"\n",
"for nct_id in NCTIDs:\n",
" TargetCriteria = df.loc[df['NCTID'] == nct_id, 'Eligibility Criteria'].values[0]\n",
" AgentJudgment = CriteriaCheckAgent.evaluate_eligibility(TargetCriteria, ex_question)\n",
" print(AgentJudgment)\n",
"\n",
" AgentGrade = grader_agent.evaluate_eligibility(AgentJudgment)\n",
" print(AgentGrade)\n",
" # NCTIDγ«δΈθ΄γγθ‘γθ¦γ€γγ¦ζ΄ζ°\n",
" df.loc[df['NCTID'] == nct_id, 'AgentJudgment'] = AgentJudgment\n",
" df.loc[df['NCTID'] == nct_id, 'AgentGrade'] = AgentGrade"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "gradio",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|