File size: 8,911 Bytes
e096153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_url\" in LlamaCPP has conflict with protected namespace \"model_\".\n",
      "\n",
      "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
      "  warnings.warn(\n",
      "/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_path\" in LlamaCPP has conflict with protected namespace \"model_\".\n",
      "\n",
      "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
      "  warnings.warn(\n",
      "/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_kwargs\" in LlamaCPP has conflict with protected namespace \"model_\".\n",
      "\n",
      "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7860\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from OpenAITools.ExpertTools import GetPubmedSummaryDf, generate, search\n",
    "from llama_index.core import  SummaryIndex\n",
    "from llama_index.core import Document\n",
    "from llama_index.llms.groq import Groq\n",
    "from llama_index.core import ServiceContext, set_global_service_context\n",
    "from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt\n",
    "#from llama_index.settings import Settings\n",
    "from llama_index.core import Settings\n",
    "import gradio as gr\n",
    "\n",
    "#models\n",
    "LLAMA3_8B = \"Llama3-8b-8192\"\n",
    "LLAMA3_70B = \"Llama3-70b-8192\"\n",
    "Mixtral  = \"mixtral-8x7b-32768\" \n",
    "\n",
    "\n",
    "def custom_completion_to_prompt(completion: str) -> str:\n",
    "    return completion_to_prompt(\n",
    "        completion, system_prompt=(\n",
    "            \"You are a Q&A assistant. Your goal is to answer questions as \"\n",
    "            \"accurately as possible is the instructions and context provided.\"\n",
    "        ),\n",
    "    )\n",
    "\n",
    "def getMutationEffect(cancer_name, gene_name):\n",
    "    searchWords = \"(\" + str(cancer_name) + \") AND \" + \"(\" + str(gene_name) + \") AND(treatment)\"\n",
    "    studies = search(searchWords)\n",
    "    df, abstracts = GetPubmedSummaryDf(studies)\n",
    "    \n",
    "    # Define LLM\n",
    "    llm = Groq(\n",
    "        model=LLAMA3_8B,\n",
    "        temperature=0.01,\n",
    "        context_window=4096,\n",
    "        completion_to_prompt=custom_completion_to_prompt,\n",
    "        messages_to_prompt=messages_to_prompt,\n",
    "    )\n",
    "    \n",
    "    # グローバルサービスコンテキストの設定\n",
    "    Settings.llm = llm\n",
    "    documents = [Document(text=t) for t in abstracts[:10]]\n",
    "    index = SummaryIndex.from_documents(documents)\n",
    "    query_engine = index.as_query_engine(response_mode=\"tree_summarize\")\n",
    "    prompt = f\"Please prepare a single summary of the abstracts of the following papers. Pay particular attention to the {gene_name} gene\"\n",
    "    response = query_engine.query(prompt)\n",
    "    \n",
    "    # テキストをファイルに保存\n",
    "    with open(\"mutation_effect_summary.txt\", \"w\") as file:\n",
    "        file.write(str(response))  # responseを文字列に変換して書き込み\n",
    "    \n",
    "    return \"mutation_effect_summary.txt\"  # ダウンロードするファイル名を返す\n",
    "\n",
    "# Gradioインターフェース設定\n",
    "demo = gr.Interface(\n",
    "    fn=getMutationEffect,\n",
    "    inputs=[gr.Textbox(label=\"CancerName\"), gr.Textbox(label=\"GeneName\")],\n",
    "    outputs=gr.File(label=\"Download Summary as .txt\")  # ダウンロードボタンを表示\n",
    ")\n",
    "\n",
    "demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7862\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "\n",
    "# モデルの定義\n",
    "LLAMA3_8B = \"Llama3-8b-8192\"\n",
    "LLAMA3_70B = \"Llama3-70b-8192\"\n",
    "Mixtral  = \"mixtral-8x7b-32768\"\n",
    "\n",
    "def custom_completion_to_prompt(completion: str) -> str:\n",
    "    return completion_to_prompt(\n",
    "        completion, system_prompt=(\n",
    "            \"You are a Q&A assistant. Your goal is to answer questions as \"\n",
    "            \"accurately as possible is the instructions and context provided.\"\n",
    "        ),\n",
    "    )\n",
    "\n",
    "def getMutationEffect(cancer_name, gene_name):\n",
    "    searchWords = \"(\" + str(cancer_name) + \") AND \" + \"(\" + str(gene_name) + \") AND(treatment)\"\n",
    "    studies = search(searchWords)\n",
    "    df, abstracts = GetPubmedSummaryDf(studies)\n",
    "    \n",
    "    # Define LLM\n",
    "    llm = Groq(\n",
    "        model=LLAMA3_8B,\n",
    "        temperature=0.01,\n",
    "        context_window=4096,\n",
    "        completion_to_prompt=custom_completion_to_prompt,\n",
    "        messages_to_prompt=messages_to_prompt,\n",
    "    )\n",
    "    \n",
    "    # グローバルサービスコンテキストの設定\n",
    "    Settings.llm = llm\n",
    "    documents = [Document(text=t) for t in abstracts[:10]]\n",
    "    index = SummaryIndex.from_documents(documents)\n",
    "    query_engine = index.as_query_engine(response_mode=\"tree_summarize\")\n",
    "    prompt = f\"Please prepare a single summary of the abstracts of the following papers. Pay particular attention to the {gene_name} gene\"\n",
    "    response = query_engine.query(prompt)\n",
    "    \n",
    "    # テキストをファイルに保存\n",
    "    summary_text = str(response)\n",
    "    outputname = cancer_name + \"_\" + gene_name + \"_\" + \"mutation_effect_summary.txt\"\n",
    "    with open(outputname, \"w\") as file:\n",
    "        file.write(summary_text)\n",
    "    \n",
    "    return summary_text, outputname  # テキストとダウンロード用ファイルを返す\n",
    "\n",
    "# Gradioインターフェース設定\n",
    "demo = gr.Interface(\n",
    "    fn=getMutationEffect,\n",
    "    inputs=[gr.Textbox(label=\"CancerName\"), gr.Textbox(label=\"GeneName\")],\n",
    "    outputs=[gr.Textbox(label=\"Summary\"), gr.File(label=\"Download Summary as .txt\")]  # テキスト表示とダウンロードボタンを両方表示\n",
    ")\n",
    "\n",
    "demo.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "gradio",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}