Spaces:
Sleeping
Sleeping
File size: 8,911 Bytes
e096153 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_url\" in LlamaCPP has conflict with protected namespace \"model_\".\n",
"\n",
"You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
" warnings.warn(\n",
"/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_path\" in LlamaCPP has conflict with protected namespace \"model_\".\n",
"\n",
"You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
" warnings.warn(\n",
"/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_kwargs\" in LlamaCPP has conflict with protected namespace \"model_\".\n",
"\n",
"You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from OpenAITools.ExpertTools import GetPubmedSummaryDf, generate, search\n",
"from llama_index.core import SummaryIndex\n",
"from llama_index.core import Document\n",
"from llama_index.llms.groq import Groq\n",
"from llama_index.core import ServiceContext, set_global_service_context\n",
"from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt\n",
"#from llama_index.settings import Settings\n",
"from llama_index.core import Settings\n",
"import gradio as gr\n",
"\n",
"#models\n",
"LLAMA3_8B = \"Llama3-8b-8192\"\n",
"LLAMA3_70B = \"Llama3-70b-8192\"\n",
"Mixtral = \"mixtral-8x7b-32768\" \n",
"\n",
"\n",
"def custom_completion_to_prompt(completion: str) -> str:\n",
" return completion_to_prompt(\n",
" completion, system_prompt=(\n",
" \"You are a Q&A assistant. Your goal is to answer questions as \"\n",
" \"accurately as possible is the instructions and context provided.\"\n",
" ),\n",
" )\n",
"\n",
"def getMutationEffect(cancer_name, gene_name):\n",
" searchWords = \"(\" + str(cancer_name) + \") AND \" + \"(\" + str(gene_name) + \") AND(treatment)\"\n",
" studies = search(searchWords)\n",
" df, abstracts = GetPubmedSummaryDf(studies)\n",
" \n",
" # Define LLM\n",
" llm = Groq(\n",
" model=LLAMA3_8B,\n",
" temperature=0.01,\n",
" context_window=4096,\n",
" completion_to_prompt=custom_completion_to_prompt,\n",
" messages_to_prompt=messages_to_prompt,\n",
" )\n",
" \n",
" # グローバルサービスコンテキストの設定\n",
" Settings.llm = llm\n",
" documents = [Document(text=t) for t in abstracts[:10]]\n",
" index = SummaryIndex.from_documents(documents)\n",
" query_engine = index.as_query_engine(response_mode=\"tree_summarize\")\n",
" prompt = f\"Please prepare a single summary of the abstracts of the following papers. Pay particular attention to the {gene_name} gene\"\n",
" response = query_engine.query(prompt)\n",
" \n",
" # テキストをファイルに保存\n",
" with open(\"mutation_effect_summary.txt\", \"w\") as file:\n",
" file.write(str(response)) # responseを文字列に変換して書き込み\n",
" \n",
" return \"mutation_effect_summary.txt\" # ダウンロードするファイル名を返す\n",
"\n",
"# Gradioインターフェース設定\n",
"demo = gr.Interface(\n",
" fn=getMutationEffect,\n",
" inputs=[gr.Textbox(label=\"CancerName\"), gr.Textbox(label=\"GeneName\")],\n",
" outputs=gr.File(label=\"Download Summary as .txt\") # ダウンロードボタンを表示\n",
")\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7862\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"\n",
"# モデルの定義\n",
"LLAMA3_8B = \"Llama3-8b-8192\"\n",
"LLAMA3_70B = \"Llama3-70b-8192\"\n",
"Mixtral = \"mixtral-8x7b-32768\"\n",
"\n",
"def custom_completion_to_prompt(completion: str) -> str:\n",
" return completion_to_prompt(\n",
" completion, system_prompt=(\n",
" \"You are a Q&A assistant. Your goal is to answer questions as \"\n",
" \"accurately as possible is the instructions and context provided.\"\n",
" ),\n",
" )\n",
"\n",
"def getMutationEffect(cancer_name, gene_name):\n",
" searchWords = \"(\" + str(cancer_name) + \") AND \" + \"(\" + str(gene_name) + \") AND(treatment)\"\n",
" studies = search(searchWords)\n",
" df, abstracts = GetPubmedSummaryDf(studies)\n",
" \n",
" # Define LLM\n",
" llm = Groq(\n",
" model=LLAMA3_8B,\n",
" temperature=0.01,\n",
" context_window=4096,\n",
" completion_to_prompt=custom_completion_to_prompt,\n",
" messages_to_prompt=messages_to_prompt,\n",
" )\n",
" \n",
" # グローバルサービスコンテキストの設定\n",
" Settings.llm = llm\n",
" documents = [Document(text=t) for t in abstracts[:10]]\n",
" index = SummaryIndex.from_documents(documents)\n",
" query_engine = index.as_query_engine(response_mode=\"tree_summarize\")\n",
" prompt = f\"Please prepare a single summary of the abstracts of the following papers. Pay particular attention to the {gene_name} gene\"\n",
" response = query_engine.query(prompt)\n",
" \n",
" # テキストをファイルに保存\n",
" summary_text = str(response)\n",
" outputname = cancer_name + \"_\" + gene_name + \"_\" + \"mutation_effect_summary.txt\"\n",
" with open(outputname, \"w\") as file:\n",
" file.write(summary_text)\n",
" \n",
" return summary_text, outputname # テキストとダウンロード用ファイルを返す\n",
"\n",
"# Gradioインターフェース設定\n",
"demo = gr.Interface(\n",
" fn=getMutationEffect,\n",
" inputs=[gr.Textbox(label=\"CancerName\"), gr.Textbox(label=\"GeneName\")],\n",
" outputs=[gr.Textbox(label=\"Summary\"), gr.File(label=\"Download Summary as .txt\")] # テキスト表示とダウンロードボタンを両方表示\n",
")\n",
"\n",
"demo.launch()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "gradio",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|