{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_url\" in LlamaCPP has conflict with protected namespace \"model_\".\n", "\n", "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n", " warnings.warn(\n", "/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_path\" in LlamaCPP has conflict with protected namespace \"model_\".\n", "\n", "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n", " warnings.warn(\n", "/Users/satoc/miniforge3/envs/gradio/lib/python3.12/site-packages/pydantic/_internal/_fields.py:132: UserWarning: Field \"model_kwargs\" in LlamaCPP has conflict with protected namespace \"model_\".\n", "\n", "You may be able to resolve this warning by setting `model_config['protected_namespaces'] = ()`.\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7860\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from OpenAITools.ExpertTools import GetPubmedSummaryDf, generate, search\n", "from llama_index.core import SummaryIndex\n", "from llama_index.core import Document\n", "from llama_index.llms.groq import Groq\n", "from llama_index.core import ServiceContext, set_global_service_context\n", "from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt\n", "#from llama_index.settings import Settings\n", "from llama_index.core import Settings\n", "import gradio as gr\n", "\n", "#models\n", "LLAMA3_8B = \"Llama3-8b-8192\"\n", "LLAMA3_70B = \"Llama3-70b-8192\"\n", "Mixtral = \"mixtral-8x7b-32768\" \n", "\n", "\n", "def custom_completion_to_prompt(completion: str) -> str:\n", " return completion_to_prompt(\n", " completion, system_prompt=(\n", " \"You are a Q&A assistant. Your goal is to answer questions as \"\n", " \"accurately as possible is the instructions and context provided.\"\n", " ),\n", " )\n", "\n", "def getMutationEffect(cancer_name, gene_name):\n", " searchWords = \"(\" + str(cancer_name) + \") AND \" + \"(\" + str(gene_name) + \") AND(treatment)\"\n", " studies = search(searchWords)\n", " df, abstracts = GetPubmedSummaryDf(studies)\n", " \n", " # Define LLM\n", " llm = Groq(\n", " model=LLAMA3_8B,\n", " temperature=0.01,\n", " context_window=4096,\n", " completion_to_prompt=custom_completion_to_prompt,\n", " messages_to_prompt=messages_to_prompt,\n", " )\n", " \n", " # グローバルサービスコンテキストの設定\n", " Settings.llm = llm\n", " documents = [Document(text=t) for t in abstracts[:10]]\n", " index = SummaryIndex.from_documents(documents)\n", " query_engine = index.as_query_engine(response_mode=\"tree_summarize\")\n", " prompt = f\"Please prepare a single summary of the abstracts of the following papers. Pay particular attention to the {gene_name} gene\"\n", " response = query_engine.query(prompt)\n", " \n", " # テキストをファイルに保存\n", " with open(\"mutation_effect_summary.txt\", \"w\") as file:\n", " file.write(str(response)) # responseを文字列に変換して書き込み\n", " \n", " return \"mutation_effect_summary.txt\" # ダウンロードするファイル名を返す\n", "\n", "# Gradioインターフェース設定\n", "demo = gr.Interface(\n", " fn=getMutationEffect,\n", " inputs=[gr.Textbox(label=\"CancerName\"), gr.Textbox(label=\"GeneName\")],\n", " outputs=gr.File(label=\"Download Summary as .txt\") # ダウンロードボタンを表示\n", ")\n", "\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7862\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import gradio as gr\n", "\n", "# モデルの定義\n", "LLAMA3_8B = \"Llama3-8b-8192\"\n", "LLAMA3_70B = \"Llama3-70b-8192\"\n", "Mixtral = \"mixtral-8x7b-32768\"\n", "\n", "def custom_completion_to_prompt(completion: str) -> str:\n", " return completion_to_prompt(\n", " completion, system_prompt=(\n", " \"You are a Q&A assistant. Your goal is to answer questions as \"\n", " \"accurately as possible is the instructions and context provided.\"\n", " ),\n", " )\n", "\n", "def getMutationEffect(cancer_name, gene_name):\n", " searchWords = \"(\" + str(cancer_name) + \") AND \" + \"(\" + str(gene_name) + \") AND(treatment)\"\n", " studies = search(searchWords)\n", " df, abstracts = GetPubmedSummaryDf(studies)\n", " \n", " # Define LLM\n", " llm = Groq(\n", " model=LLAMA3_8B,\n", " temperature=0.01,\n", " context_window=4096,\n", " completion_to_prompt=custom_completion_to_prompt,\n", " messages_to_prompt=messages_to_prompt,\n", " )\n", " \n", " # グローバルサービスコンテキストの設定\n", " Settings.llm = llm\n", " documents = [Document(text=t) for t in abstracts[:10]]\n", " index = SummaryIndex.from_documents(documents)\n", " query_engine = index.as_query_engine(response_mode=\"tree_summarize\")\n", " prompt = f\"Please prepare a single summary of the abstracts of the following papers. Pay particular attention to the {gene_name} gene\"\n", " response = query_engine.query(prompt)\n", " \n", " # テキストをファイルに保存\n", " summary_text = str(response)\n", " outputname = cancer_name + \"_\" + gene_name + \"_\" + \"mutation_effect_summary.txt\"\n", " with open(outputname, \"w\") as file:\n", " file.write(summary_text)\n", " \n", " return summary_text, outputname # テキストとダウンロード用ファイルを返す\n", "\n", "# Gradioインターフェース設定\n", "demo = gr.Interface(\n", " fn=getMutationEffect,\n", " inputs=[gr.Textbox(label=\"CancerName\"), gr.Textbox(label=\"GeneName\")],\n", " outputs=[gr.Textbox(label=\"Summary\"), gr.File(label=\"Download Summary as .txt\")] # テキスト表示とダウンロードボタンを両方表示\n", ")\n", "\n", "demo.launch()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "gradio", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 2 }