import gradio as gr import pandas as pd from joblib import load def cardio(age,is_male,ap_hi,ap_lo,cholesterol,gluc,smoke,alco,active,height,weight,BMI): model = load('cardiosight.joblib') df = pd.DataFrame.from_dict( { "age": [age*365], "gender":[0 if is_male else 1], "ap_hi": [ap_hi], "ap_lo": [ap_lo], "cholesterol": [cholesterol + 1], "gluc": [gluc + 1], "smoke":[1 if smoke else 0], "alco": [1 if alco else 0], "active": [1 if active else 0], "newvalues_height": [height], "newvalues_weight": [weight], "New_values_BMI": [BMI], } ) pred = model.predict(df)[0] if pred==1: predicted="Risk" else: predicted="Not Risk" return predicted iface = gr.Interface( cardio, [ gr.inputs.Slider(1,99,label="Age"), "checkbox", gr.inputs.Slider(10,250,label="Diastolic Preassure"), gr.inputs.Slider(10,250,label="Sistolic Preassure"), gr.inputs.Radio(["Normal","High","Very High"],type="index",label="Cholesterol"), gr.inputs.Radio(["Normal","High","Very High"],type="index",label="Glucosa Level"), "checkbox", "checkbox", "checkbox", gr.inputs.Slider(30,220,label="Height in cm"), gr.inputs.Slider(10,300,label="Weight in Kg"), gr.inputs.Slider(1,50,label="BMI"), ], "text", examples=[ [40,True,120,80,2,1,0,0,1,168,62,21], [35,False,150,60,1,0,0,0,1,143,52,31], [60,True,160,70,1,1,1,1,0,185,90,23], ], interpretation="default", ) iface.launch(debug=True)