Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from tensorflow.keras.utils import img_to_array | |
import imutils | |
import cv2 | |
from keras.models import load_model | |
import numpy as np | |
from gradio.components import Image | |
from gradio.components import Label | |
# parameters for loading data and images | |
detection_model_path = 'haarcascade_frontalface_default.xml' | |
emotion_model_path = '_mini_XCEPTION.102-0.66.hdf5' | |
#emotion_model_path = 'emotion_detection_model_state.pth' | |
# hyper-parameters for bounding boxes shape | |
# loading models | |
face_detection = cv2.CascadeClassifier(detection_model_path) | |
#emotion_classifier = torch.load(emotion_model_path,map_location=torch.device('cpu')) | |
emotion_classifier = load_model(emotion_model_path, compile=False) | |
EMOTIONS = ["angry", "disgusted", "scared", "happy", "sad", "surprised", | |
"neutral"] | |
def predict(frame): | |
frame = imutils.resize(frame, width=300) | |
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, | |
minNeighbors=5, minSize=(30, 30), | |
flags=cv2.CASCADE_SCALE_IMAGE) | |
frameClone = frame.copy() | |
if len(faces) > 0: | |
faces = sorted(faces, reverse=True, | |
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] | |
(fX, fY, fW, fH) = faces | |
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare | |
# the ROI for classification via the CNN | |
roi = gray[fY:fY + fH, fX:fX + fW] | |
roi = cv2.resize(roi, (64, 64)) | |
roi = roi.astype("float") / 255.0 | |
roi = img_to_array(roi) | |
roi = np.expand_dims(roi, axis=0) | |
preds = emotion_classifier.predict(roi)[0] | |
label = EMOTIONS[preds.argmax()] | |
else: | |
return frameClone, "No se ha detectado ninguna cara" | |
probs = {} | |
cv2.putText(frameClone, label, (fX, fY - 10), | |
cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1) | |
cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH), | |
(238, 164, 64), 2) | |
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): | |
probs[emotion] = float(prob) | |
return frameClone, probs | |
inp = gr.inputs.Image(source="webcam") | |
out = [ | |
gr.outputs.Image(label="Emoci贸n detectada"), | |
gr.outputs.Label(num_top_classes=2, label="Posibles emociones detectadas") | |
] | |
title = "Reconocimiento de emociones" | |
article = "Es posible que una mala iluminaci贸n impida la detecci贸n del rostro" | |
description = "Este espacio muestra una demo del proyecto para Saturdays AI (https://saturdays.ai/2021/11/22/reconocimiento-de-emociones/)." | |
gr.Interface(predict, inp, out, capture_session=True, title=title, article=article , theme="dark-peach", | |
description=description).launch(inbrowser=True) |