Spaces:
Build error
Build error
import gradio as gr | |
import pyttsx3 # Text-to-speech | |
import speech_recognition as sr # Speech-to-text | |
from llama_cpp import Llama | |
model = "bartowski/Llama-3.2-1B-Instruct-GGUF" | |
llm = Llama.from_pretrained( | |
repo_id=model, | |
filename="Llama-3.2-1B-Instruct-Q8_0.gguf", | |
verbose=True, | |
use_mmap=True, | |
use_mlock=True, | |
n_threads=4, | |
n_threads_batch=4, | |
n_ctx=2000, | |
) | |
# Initialize TTS engine | |
tts_engine = pyttsx3.init() | |
# Speech-to-text function | |
def speech_to_text(): | |
recognizer = sr.Recognizer() | |
with sr.Microphone() as source: | |
print("Listening...") | |
audio = recognizer.listen(source) | |
try: | |
text = recognizer.recognize_google(audio) | |
print(f"You said: {text}") | |
return text | |
except sr.UnknownValueError: | |
return "Sorry, I did not understand that." | |
except sr.RequestError as e: | |
return f"Could not request results; {e}" | |
# Text-to-speech function | |
def text_to_speech(response_text): | |
tts_engine.say(response_text) | |
tts_engine.runAndWait() | |
# Main AI response function | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
completion = llm.create_chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p | |
) | |
for message in completion: | |
delta = message['choices'][0]['delta'] | |
if 'content' in delta: | |
response += delta['content'] | |
yield response | |
# Speak the AI response | |
text_to_speech(response) | |
# Gradio UI with added microphone component | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Microphone(streaming=True, label="Speak your question"), | |
gr.Textbox( | |
value="You are a helpful assistant.", | |
label="System message", | |
), | |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
outputs=gr.Textbox(label="Response"), | |
live=True, | |
description=model, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |