from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "google/gemma-2b-it" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(prompt): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=50) return tokenizer.decode(outputs[0], skip_special_tokens=True)