File size: 3,407 Bytes
87f468d
 
 
97741eb
87f468d
92ed5af
87f468d
 
 
97741eb
 
 
 
 
 
 
 
 
 
 
92ed5af
87f468d
97741eb
 
 
 
 
 
92ed5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87f468d
92ed5af
87f468d
 
92ed5af
 
87f468d
92ed5af
87f468d
92ed5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87f468d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gradio as gr
import openai
import os
import random

# Setting up the API key for Groq API
openai.api_key = os.getenv("GROQ_API_KEY")
openai.api_base = "https://api.groq.com/openai/v1"

# Predefined fine-tuned chat dataset for reference
fine_tuned_chats = [
    {"user": "Bhai, padhai nahi ho rahi…", "bot": "Arre, chill kar bhai! Padhai ki tension mat le, thoda break le… Mast coffee maar aur wapas aa ja. ☕"},
    {"user": "Yaar, motivation nahi mil raha…", "bot": "Motivation milta nahi… Usko dhoondhna padta hai! 😎 Ek goal set kar aur bas lag ja kaam pe."},
    {"user": "Life boring lag rahi hai…", "bot": "Arre bhai, life boring nahi hoti… Bas hum thoda lazy ho jate hai! 😂 Chal, kuch naya try kar!"},
    {"user": "Bro, exam aa raha hai… tension ho rahi hai.", "bot": "Arre bhai, tension lene ka nahi… Last night ke revision pe bharosa rakh! 📚"},
    {"user": "Bhai, dosti mein problem ho gayi hai…", "bot": "Arre, dosti ka funda simple hai… Ego hatao, apna dil kholo. Jo real friend hoga, woh samjhega. 🤝"},
    {"user": "Bore ho raha hoon… Timepass karna hai.", "bot": "Arre, meme dekho, thoda gaming karlo, ya kisi se baat karlo. Zindagi ka mazza lo! 😂"},
    {"user": "Career ko lekar confuse hoon… kya karu?", "bot": "Confusion sabko hota hai… Thoda explore karo, apne interest find karo. Passion follow karo, paise apne aap aayenge. 💼"}
]

# Function to get a casual, funny response with grammatical errors
def get_groq_response(message):
    # Check if the user message matches any fine-tuned chat
    for chat in fine_tuned_chats:
        if message.lower() == chat["user"].lower():
            return chat["bot"]

    # If not in the predefined chats, call the Groq API
    try:
        response = openai.ChatCompletion.create(
            model="llama-3.1-70b-versatile",
            messages=[
                {
                    "role": "system",
                    "content": (
                        "You are a chill, funny college buddy who talks in Hinglish. Use playful jokes and casual chat language. "
                        "Avoid perfect grammar — make intentional grammatical mistakes like missing articles, mixing tenses, and using casual expressions. "
                        "Always keep the conversation light-hearted, friendly, and positive. No roasting, no offensive content."
                    )
                },
                {"role": "user", "content": message}
            ]
        )
        return response.choices[0].message["content"]
    except Exception as e:
        return f"Error: {str(e)}"

# Chatbot function
def chatbot(user_input, history=[]):
    bot_response = get_groq_response(user_input)
    history.append((user_input, bot_response))
    return history, history

# Gradio Interface setup with a fun description
chat_interface = gr.Interface(
    fn=chatbot,
    inputs=["text", "state"],
    outputs=["chatbot", "state"],
    live=False,
    title="Bhai ka Chatbot 😎",
    description=(
        "Welcome to **Bhai ka Chatbot!** 🤓\n\n"
        "Yaha **GPT nahi, apun hai!**\n\n"
        "Baat karenge college ki life, friends, study tension aur kuch random faaltu jokes bhi milega. 😂\n\n"
        "Warning: **Thoda chill maar, grammar mat seekh... Apun thoda lazy hai!**\n"
        "*Bol... kya baat hai?* 🤙"
    ),
)

# Launch the Gradio interface
chat_interface.launch()