SatyamSinghal commited on
Commit
5431955
·
verified ·
1 Parent(s): fe22d05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +206 -50
app.py CHANGED
@@ -1,64 +1,220 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
41
 
 
 
 
42
 
 
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import openai
3
+ import os
4
 
5
+ # Set OpenAI API Key
6
+ openai.api_key = os.getenv("GROQ_API_KEY")
7
+ openai.api_base = "https://api.groq.com/openai/v1"
 
8
 
9
+ # Dictionary to store categorized chats
10
+ saved_chats = {
11
+ "Stress Management": [],
12
+ "Career Advice": [],
13
+ "General": [],
14
+ "Suggestions": []
15
+ }
16
 
17
+ # Function to get response from GROQ API
18
+ def get_groq_response(message):
19
+ try:
20
+ response = openai.ChatCompletion.create(
21
+ model="llama-3.1-70b-versatile",
22
+ messages=[
23
+ {"role": "user", "content": message},
24
+ {"role": "system", "content": "You will talk like a Motivational Speaker to help people come out of stress."}
25
+ ]
26
+ )
27
+ return response.choices[0].message["content"]
28
+ except Exception as e:
29
+ return f"Error: {str(e)}"
30
 
31
+ # Function to classify messages based on the topic
32
+ def classify_message(user_message, bot_response):
33
+ if "stress" in user_message.lower():
34
+ saved_chats["Stress Management"].append((user_message, bot_response))
35
+ return "Stress Management"
36
+ elif "career" in user_message.lower():
37
+ saved_chats["Career Advice"].append((user_message, bot_response))
38
+ return "Career Advice"
39
+ elif "suggestions" in user_message.lower():
40
+ saved_chats["Suggestions"].append((user_message, bot_response))
41
+ return "Suggestions"
42
+ else:
43
+ saved_chats["General"].append((user_message, bot_response))
44
+ return "General"
45
 
46
+ # Chatbot function
47
+ def chatbot(user_input, history=[]):
48
+ bot_response = get_groq_response(user_input)
49
+ topic = classify_message(user_input, bot_response)
50
+ history.append((f"({topic}) You: {user_input}", f"Motivator Bot: {bot_response}"))
51
+ return history, saved_chats
52
 
53
+ # Custom HTML, CSS, and JavaScript
54
+ custom_html = """
55
+ <!DOCTYPE html>
56
+ <html lang="en">
57
+ <head>
58
+ <meta charset="UTF-8">
59
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
60
+ <title>Motivational Chatbot</title>
61
+ <style>
62
+ body {
63
+ font-family: 'Poppins', sans-serif;
64
+ background: #121212;
65
+ color: #f3f3f3;
66
+ margin: 0;
67
+ padding: 0;
68
+ display: flex;
69
+ justify-content: center;
70
+ align-items: center;
71
+ height: 100vh;
72
+ }
73
+ .container {
74
+ width: 90%;
75
+ max-width: 800px;
76
+ background: #1e1e1e;
77
+ border-radius: 15px;
78
+ box-shadow: 0px 10px 30px rgba(0, 0, 0, 0.5);
79
+ overflow: hidden;
80
+ display: flex;
81
+ flex-direction: column;
82
+ }
83
+ header {
84
+ background: #282828;
85
+ padding: 20px;
86
+ text-align: center;
87
+ color: #ffffff;
88
+ border-bottom: 2px solid #ff6a95;
89
+ }
90
+ header h1 {
91
+ margin: 0;
92
+ font-size: 1.8rem;
93
+ }
94
+ header p {
95
+ margin: 5px 0 0;
96
+ font-size: 1rem;
97
+ color: #cccccc;
98
+ }
99
+ main {
100
+ flex: 1;
101
+ padding: 20px;
102
+ display: flex;
103
+ flex-direction: column;
104
+ }
105
+ .chat-container {
106
+ display: flex;
107
+ flex-direction: column;
108
+ height: 100%;
109
+ }
110
+ #chat-output {
111
+ flex: 1;
112
+ overflow-y: auto;
113
+ background: #212121;
114
+ border-radius: 10px;
115
+ padding: 10px;
116
+ margin-bottom: 10px;
117
+ box-shadow: inset 0 0 10px rgba(0, 0, 0, 0.5);
118
+ }
119
+ .chat-input {
120
+ display: flex;
121
+ gap: 10px;
122
+ }
123
+ textarea {
124
+ flex: 1;
125
+ padding: 10px;
126
+ border-radius: 5px;
127
+ border: none;
128
+ background: #333;
129
+ color: #fff;
130
+ resize: none;
131
+ font-size: 1rem;
132
+ }
133
+ textarea:focus {
134
+ outline: none;
135
+ box -shadow: 0 0 5px #ff6a95;
136
+ }
137
+ button {
138
+ padding: 10px 20px;
139
+ background: linear-gradient(45deg, #ff6a95, #ff4b81);
140
+ border: none;
141
+ border-radius: 5px;
142
+ color: #fff;
143
+ font-weight: bold;
144
+ cursor: pointer;
145
+ transition: background 0.3s, transform 0.3s;
146
+ }
147
+ button:hover {
148
+ background: linear-gradient(45deg, #ff4b81, #ff6a95);
149
+ transform: scale(1.05);
150
+ }
151
+ footer {
152
+ background: #282828;
153
+ text-align: center;
154
+ padding: 10px;
155
+ color: #999;
156
+ font-size: 0.9rem;
157
+ border-top: 2px solid #ff6a95;
158
+ }
159
+ </style>
160
+ </head>
161
+ <body>
162
+ <div class="container">
163
+ <header>
164
+ <h1>✨ Motivational Chatbot ✨</h1>
165
+ <p>Your personal motivational speaker!</p>
166
+ </header>
167
+ <main>
168
+ <div class="chat-container">
169
+ <div id="chat-output"></div>
170
+ <div class="chat-input">
171
+ <textarea id="user-input" placeholder="Type your message here..."></textarea>
172
+ <button id="send-btn">Send</button>
173
+ </div>
174
+ </div>
175
+ </main>
176
+ <footer>
177
+ <p>Developed with ❤️ using OpenAI APIs</p>
178
+ </footer>
179
+ </div>
180
+ <script>
181
+ document.getElementById("send-btn").addEventListener("click", async () => {
182
+ const userInput = document.getElementById("user-input").value.trim();
183
+ if (!userInput) return;
184
 
185
+ // Display user input
186
+ const chatOutput = document.getElementById("chat-output");
187
+ const userMessage = `<div class="user-message"><strong>You:</strong> ${userInput}</div>`;
188
+ chatOutput.innerHTML += userMessage;
 
 
 
 
189
 
190
+ // Call backend
191
+ const response = await fetch("/chat", {
192
+ method: "POST",
193
+ headers: { "Content-Type": "application/json" },
194
+ body: JSON.stringify({ user_input: userInput })
195
+ });
196
+ const botResponse = await response.json();
197
 
198
+ // Display bot response
199
+ const botMessage = `<div class="bot-message"><strong>Bot:</strong> ${botResponse}</div>`;
200
+ chatOutput.innerHTML += botMessage;
201
 
202
+ // Clear input
203
+ document.getElementById("user-input").value = "";
204
+ chatOutput.scrollTop = chatOutput.scrollHeight;
205
+ });
206
+ </script>
207
+ </body>
208
+ </html>
209
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
+ # Launch Gradio interface with custom frontend
212
+ interface = gr.Interface(
213
+ fn=chatbot,
214
+ inputs=[gr.Textbox(lines=2, label="Your Message"), gr.State()],
215
+ outputs=[gr.JSON(), gr.State()],
216
+ live=True
217
+ )
218
 
219
+ app = gr.HTML(custom_html)
220
+ interface.launch(share=True)