SatyamSinghal's picture
Update app.py
4c7ba35 verified
raw
history blame
1.61 kB
import openai
import gradio as gr
# Import all data modules
from company_profile import company_profile
from financials import financials
from workforce import workforce
# Import other modules as needed
# Set up the OpenAI (GROQ) API
openai.api_key = "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"
openai.api_base = "https://api.groq.com/openai/v1"
# Function to query the AI agent
def query_ai(user_input):
# Contextual data from the application
context_data = f"""
Company Name: {company_profile['brand_name']}
Headquarters: {company_profile['headquarters']}
Founders: {', '.join(company_profile['founders'])}
Latest Valuation: {financials['latest_valuation']}
Total Funding: {financials['total_funding']}
Employees: {workforce['total_employees']}
"""
# Call the OpenAI API
try:
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=[
{"role": "system", "content": "You are a Private Market Analysis AI Agent."},
{"role": "user", "content": f"{context_data}\n\n{user_input}"}
]
)
return response.choices[0].message["content"]
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
def chatbot_interface(user_input):
return query_ai(user_input)
# Launch the Gradio app
gr.Interface(
fn=chatbot_interface,
inputs="text",
outputs="text",
title="Satyam Market Analysis",
description="Ask me about private companies like Razorpay, including financials, products, and more!"
).launch()