SatyamSinghal commited on
Commit
5e63a5c
·
verified ·
1 Parent(s): a9a186b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -29
app.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import gradio as gr
3
  import openai
4
  from langdetect import detect
5
- from fpdf import FPDF # To generate PDF
6
  import json
7
 
8
  # Set up OpenAI API with your custom endpoint
@@ -85,27 +84,6 @@ def format_response(data):
85
 
86
  return formatted_response.strip()
87
 
88
- # Function to generate PDF based on investment data
89
- def generate_pdf(company_name, investment_data):
90
- pdf = FPDF()
91
- pdf.set_auto_page_break(auto=True, margin=15)
92
- pdf.add_page()
93
-
94
- # Title
95
- pdf.set_font("Arial", 'B', 16)
96
- pdf.cell(200, 10, f"Investment Report for {company_name}", ln=True, align="C")
97
-
98
- # Adding investment data
99
- pdf.set_font("Arial", size=12)
100
- pdf.ln(10)
101
- pdf.multi_cell(0, 10, f"Investment Data:\n\n{investment_data}")
102
-
103
- # Save PDF to file
104
- pdf_output = f"{company_name}_investment_report.pdf"
105
- pdf.output(pdf_output)
106
-
107
- return pdf_output
108
-
109
  # Function to handle the interaction and queries
110
  def market_analysis_agent(user_input, history=[]):
111
  try:
@@ -120,13 +98,7 @@ def market_analysis_agent(user_input, history=[]):
120
  return history, history
121
 
122
  # Handle private market queries with datasets
123
- if "create a pdf" in user_input.lower() and "investment" in user_input.lower():
124
- company_name = "Razorpay" # Example; in real scenario, extract from user input
125
- investment_data = "Investment data for Razorpay will go here." # Replace with actual data retrieval logic
126
- pdf_output = generate_pdf(company_name, investment_data)
127
- return history, gr.File(pdf_output) # Returning the generated PDF file
128
-
129
- elif "company" in user_input.lower():
130
  response = company_profile
131
  elif "financials" in user_input.lower():
132
  response = financials
 
2
  import gradio as gr
3
  import openai
4
  from langdetect import detect
 
5
  import json
6
 
7
  # Set up OpenAI API with your custom endpoint
 
84
 
85
  return formatted_response.strip()
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  # Function to handle the interaction and queries
88
  def market_analysis_agent(user_input, history=[]):
89
  try:
 
98
  return history, history
99
 
100
  # Handle private market queries with datasets
101
+ if "company" in user_input.lower():
 
 
 
 
 
 
102
  response = company_profile
103
  elif "financials" in user_input.lower():
104
  response = financials