File size: 14,654 Bytes
5e3a6e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# backmapping.py
import streamlit as st
import math
from copy import deepcopy

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.constants as const
from matplotlib.legend_handler import HandlerPatch
from sunpy import log
from sunpy.coordinates import frames
from sunpy.coordinates import get_horizons_coord

from apps.extras.selected_bodies import body_dict

plt.rcParams['axes.linewidth'] = 1.5
plt.rcParams['font.size'] = 15
plt.rcParams['agg.path.chunksize'] = 20000

pd.options.display.max_rows = None
pd.options.display.float_format = '{:.1f}'.format

# disable unnecessary logging
log.setLevel('WARNING')


def print_body_list():
    """
    prints a selection of body keys and the corresponding body names which may be provided to the
    HeliosphericConstellation class
    """
    # print('Please visit https://ssd.jpl.nasa.gov/horizons.cgi?s_target=1#top for a complete list of available bodies')
    data = pd.DataFrame\
        .from_dict(body_dict, orient='index', columns=['ID', 'Body', 'Color'])\
        .drop(['ID', 'Color'], 'columns')\
        .drop_duplicates()
    data.index.name = 'Key'
    return data


class HeliosphericConstellation():
    """
    Class which handles the selected bodies
    Parameters
    ----------
    date: str
    body_list: list
            list of body keys to be used. Keys can be string of int.
    vsw_list: list, optional
            list of solar wind speeds at the position of the different bodies. Must have the same length as body_list.
            Default is an epmty list leading to vsw=400km/s used for every body.
    reference_long: float, optional
                Carrington longitute of reference position at the Sun
    reference_lat: float, optional
                Heliographic latitude of referene position at the Sun
    """

    def __init__(self, date, body_list, vsw_list=[], reference_long=None, reference_lat=None):
        body_list = list(dict.fromkeys(body_list))
        bodies = deepcopy(body_dict)

        self.date = date
        self.reference_long = reference_long
        self.reference_lat = reference_lat

        pos_E = get_horizons_coord(399, self.date, 'id')  # (lon, lat, radius) in (deg, deg, AU)
        self.pos_E = pos_E.transform_to(frames.HeliographicCarrington(observer='Sun'))

        if len(vsw_list) == 0:
            vsw_list = np.zeros(len(body_list)) + 400

        random_cols = ['forestgreen', 'mediumblue', 'm', 'saddlebrown', 'tomato', 'olive', 'steelblue', 'darkmagenta',
                       'c', 'darkslategray', 'yellow', 'darkolivegreen']
        body_lon_list = []
        body_lat_list = []
        body_dist_list = []
        longsep_E_list = []
        latsep_E_list = []
        body_vsw_list = []
        footp_long_list = []
        longsep_list = []
        latsep_list = []
        footp_longsep_list = []

        for i, body in enumerate(body_list.copy()):
            if body in bodies:
                body_id = bodies[body][0]
                body_lab = bodies[body][1]
                body_color = bodies[body][2]

            else:
                body_id = body
                body_lab = str(body)
                body_color = random_cols[i]
                bodies.update(dict.fromkeys([body_id], [body_id, body_lab, body_color]))

            try:
                pos = get_horizons_coord(body_id, date, 'id')  # (lon, lat, radius) in (deg, deg, AU)
                pos = pos.transform_to(frames.HeliographicCarrington(observer='Sun'))
                bodies[body_id].append(pos)
                bodies[body_id].append(vsw_list[i])

                longsep_E = pos.lon.value - self.pos_E.lon.value
                if longsep_E > 180:
                    longsep_E = longsep_E - 360.
                latsep_E = pos.lat.value - self.pos_E.lat.value

                body_lon_list.append(pos.lon.value)
                body_lat_list.append(pos.lat.value)
                body_dist_list.append(pos.radius.value)
                longsep_E_list.append(longsep_E)
                latsep_E_list.append(latsep_E)

                body_vsw_list.append(vsw_list[i])

                sep, alpha = self.backmapping(pos, date, reference_long, vsw=vsw_list[i])
                bodies[body_id].append(sep)

                body_footp_long = pos.lon.value + alpha
                if body_footp_long > 360:
                    body_footp_long = body_footp_long - 360
                footp_long_list.append(body_footp_long)

                if self.reference_long is not None:
                    bodies[body_id].append(sep)
                    long_sep = pos.lon.value - self.reference_long
                    if long_sep > 180:
                        long_sep = long_sep - 360.

                    longsep_list.append(long_sep)
                    footp_longsep_list.append(sep)

                if self.reference_lat is not None:
                    lat_sep = pos.lat.value - self.reference_lat
                    latsep_list.append(lat_sep)
            except ValueError:
                print('')
                print('!!! No ephemeris for target "' + str(body) + '" for date ' + self.date)
                st.warning('No ephemeris for target "' + str(body) + '" for date ' + self.date)
                body_list.remove(body)

        body_dict_short = {sel_key: bodies[sel_key] for sel_key in body_list}
        self.body_dict = body_dict_short
        self.max_dist = np.max(body_dist_list)
        self.coord_table = pd.DataFrame(
            {'Spacecraft/Body': list(self.body_dict.keys()), 'Carrington Longitude (°)': body_lon_list,
             'Latitude (°)': body_lat_list, 'Heliocentric Distance (AU)': body_dist_list,
             "Longitudinal separation to Earth's longitude": longsep_E_list,
             "Latitudinal separation to Earth's latitude": latsep_E_list, 'Vsw': body_vsw_list,
             'Magnetic footpoint longitude (Carrington)': footp_long_list})

        if self.reference_long is not None:
            self.coord_table['Longitudinal separation between body and reference_long'] = longsep_list
            self.coord_table[
                "Longitudinal separation between body's mangetic footpoint and reference_long"] = footp_longsep_list
        if self.reference_lat is not None:
            self.coord_table['Latitudinal separation between body and reference_lat'] = latsep_list

        pass
        self.coord_table.style.set_properties(**{'text-align': 'left'})

    def backmapping(self, body_pos, date, reference_long, vsw=400):
        """
        Determine the longitudinal separation angle of a given spacecraft and a given reference longitude
        Parameters
        ----------
        body_pos : astropy.coordinates.sky_coordinate.SkyCoord
               coordinate of the body in Carrington coordinates
        date: str
              e.g., '2020-03-22 12:30'
        reference_long: float
                        Carrington longitude of reference point at Sun to which we determine the longitudinal separation
        vsw: float
             solar wind speed (km/s) used to determine the position of the magnetic footpoint of the body. Default is 400.
        out:
            sep: float
                longitudinal separation of body magnetic footpoint and reference longitude in degrees
            alpha: float
                backmapping angle
        """
        AU = const.au / 1000  # km

        pos = body_pos
        lon = pos.lon.value
        dist = pos.radius.value

        omega = math.radians(360. / (25.38 * 24 * 60 * 60))  # rot-angle in rad/sec, sidereal period

        tt = dist * AU / vsw
        alpha = math.degrees(omega * tt)

        if reference_long is not None:
            sep = (lon + alpha) - reference_long
            if sep > 180.:
                sep = sep - 360

            if sep < -180.:
                sep = 360 - abs(sep)
        else:
            sep = np.nan

        return sep, alpha

    def plot(self, plot_spirals=True, plot_sun_body_line=False, show_earth_centered_coord=True, reference_vsw=400, transparent=False, outfile=''):
        """
        Make a polar plot showing the Sun in the center (view from North) and the positions of the selected bodies
        Parameters
        ----------
        plot_spirals: bool
                    if True, the magnetic field lines connecting the bodies with the Sun are plotted
        plot_sun_body_line: bool
                    if True, straight lines connecting the bodies with the Sun are plotted
        show_earth_centered_coord: bool
                    if True, additional longitudinal tickmarks are shown with Earth at longitude 0
        reference_vsw: int
                    if defined, defines solar wind speed for reference. if not defined, 400 km/s is used
        outfile: string
                if provided, the plot is saved with outfile as filename
        """
        import pylab as pl
        AU = const.au / 1000  # km

        fig, ax = plt.subplots(subplot_kw=dict(projection='polar'), figsize=(12, 8))
        self.ax = ax

        r = np.arange(0.007, self.max_dist + 0.3, 0.001)
        omega = np.radians(360. / (25.38 * 24 * 60 * 60))  # solar rot-angle in rad/sec, sidereal period

        for i, body_id in enumerate(self.body_dict):
            body_lab = self.body_dict[body_id][1]
            body_color = self.body_dict[body_id][2]
            body_vsw = self.body_dict[body_id][4]
            body_pos = self.body_dict[body_id][3]

            pos = body_pos
            dist_body = pos.radius.value
            body_long = pos.lon.value

            E_long = self.pos_E.lon.value
            dist_e = self.pos_E.radius.value

            # plot body positions
            ax.plot(np.deg2rad(body_long), dist_body, 's', color=body_color, label=body_lab)
            if plot_sun_body_line:
                # ax.plot(alpha_ref[0], 0.01, 0)
                ax.plot([np.deg2rad(body_long), np.deg2rad(body_long)], [0.01, dist_body], ':', color=body_color)
            # plot the spirals
            if plot_spirals:
                tt = dist_body * AU / body_vsw
                alpha = np.degrees(omega * tt)
                alpha_body = np.deg2rad(body_long) + omega / (body_vsw / AU) * (dist_body - r)
                ax.plot(alpha_body, r, color=body_color)

        if self.reference_long is not None:
            delta_ref = self.reference_long
            if delta_ref < 0.:
                delta_ref = delta_ref + 360.
            alpha_ref = np.deg2rad(delta_ref) + omega / (reference_vsw / AU) * (dist_e / AU - r) - (
                        omega / (reference_vsw / AU) * (dist_e / AU))
            # old arrow style:
            # arrow_dist = min([self.max_dist + 0.1, 2.])
            # ref_arr = plt.arrow(alpha_ref[0], 0.01, 0, arrow_dist, head_width=0.12, head_length=0.11, edgecolor='black',
            #                     facecolor='black', lw=2, zorder=5, overhang=0.2)
            arrow_dist = min([self.max_dist/3.2, 2.])
            ref_arr = plt.arrow(alpha_ref[0], 0.01, 0, arrow_dist, head_width=0.2, head_length=0.07, edgecolor='black',
                                facecolor='black', lw=1.8, zorder=5, overhang=0.2)

            if plot_spirals:
                ax.plot(alpha_ref, r, '--k', label=f'field line connecting to\nref. long. (vsw={reference_vsw} km/s)')

        leg1 = ax.legend(loc=(1.2, 0.7), fontsize=13)
        if self.reference_long is not None:
            def legend_arrow(width, height, **_):
                return mpatches.FancyArrow(0, 0.5 * height, width, 0, length_includes_head=True,
                                           head_width=0.75 * height)

            leg2 = ax.legend([ref_arr], ['reference long.'], loc=(1.2, 0.6),
                             handler_map={mpatches.FancyArrow: HandlerPatch(patch_func=legend_arrow), },
                             fontsize=13)
            ax.add_artist(leg1)

        ax.set_rlabel_position(E_long + 120)
        ax.set_theta_offset(np.deg2rad(270 - E_long))
        ax.set_rmax(self.max_dist + 0.3)
        ax.set_rmin(0.01)
        ax.yaxis.get_major_locator().base.set_params(nbins=4)
        circle = plt.Circle((0., 0.), self.max_dist + 0.29, transform=ax.transData._b, edgecolor="k", facecolor=None,
                           fill=False, lw=2)
        ax.add_patch(circle)

        # manually plot r-grid lines with different resolution depending on maximum distance bodyz
        # st.sidebar.info(self.max_dist)
        if self.max_dist < 2:
            ax.set_rgrids(np.arange(0, self.max_dist + 0.29, 0.5)[1:], angle=22.5)
            # st.sidebar.info(str(np.arange(0, self.max_dist + 0.29, 0.5)))
        else:
            if self.max_dist < 10:
                ax.set_rgrids(np.arange(0, self.max_dist + 0.29, 1.0)[1:], angle=22.5)
                # st.sidebar.info(str(np.arange(0, self.max_dist + 0.29, 1.0)))

        ax.set_title(self.date + '\n', pad=60)

        plt.tight_layout()
        plt.subplots_adjust(bottom=0.15)

        if show_earth_centered_coord:
            pos1 = ax.get_position()  # get the original position of the polar plot
            offset = 0.12
            pos2 = [pos1.x0 - offset / 2, pos1.y0 - offset / 2, pos1.width + offset, pos1.height + offset]
            ax2 = self._polar_twin(ax, E_long, pos2)

        ax.tick_params(axis='x', pad=10)

        ax.text(0.94, 0.16, 'Solar-MACH', 
                fontfamily='DejaVu Serif', fontsize=28,
                ha='right', va='bottom', transform=fig.transFigure)
        ax.text(0.94, 0.12, 'https://solar-mach.github.io',
                fontfamily='DejaVu Sans', fontsize=18,
                ha='right', va='bottom', transform=fig.transFigure)
        
        if transparent:
            fig.patch.set_alpha(0.0)

        if outfile != '':
            plt.savefig(outfile)
        st.pyplot(fig)

    def _polar_twin(self, ax, E_long, position):
        """
        add an additional axes which is needed to plot additional longitudinal tickmarks with Earth at longitude 0
        """
        ax2 = ax.figure.add_axes(position, projection='polar',
                                 label='twin', frameon=False,
                                 theta_direction=ax.get_theta_direction(),
                                 theta_offset=E_long)

        ax2.set_rmax(self.max_dist + 0.3)
        ax2.yaxis.set_visible(False)
        ax2.set_theta_zero_location("S")
        ax2.tick_params(axis='x', colors='darkgreen', pad=10)
        gridlines = ax2.xaxis.get_gridlines()
        for xax in gridlines:
            xax.set_color('darkgreen')

        return ax2