Spaces:
Running
Running
Saurabh Kumar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import Qwen2VLForConditionalGeneration,
|
2 |
from qwen_vl_utils import process_vision_info
|
3 |
import streamlit as st
|
4 |
import torch
|
@@ -12,6 +12,7 @@ def init_qwen_model():
|
|
12 |
return model, processor
|
13 |
|
14 |
MODEL, PROCESSOR = init_qwen_model()
|
|
|
15 |
# Streamlit app title
|
16 |
st.title("OCR Image Text Extraction")
|
17 |
|
@@ -22,55 +23,63 @@ if uploaded_file is not None:
|
|
22 |
# Open the uploaded image file
|
23 |
image = Image.open(uploaded_file)
|
24 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
25 |
-
|
26 |
-
messages = [
|
27 |
-
{
|
28 |
-
"role": "user",
|
29 |
-
"content": [
|
30 |
-
{
|
31 |
-
"type": "image",
|
32 |
-
"image": image,
|
33 |
-
},
|
34 |
-
{"type": "text", "text": "Run Optical Character recognition on the image."},
|
35 |
-
],
|
36 |
-
}
|
37 |
-
]
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
messages
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
57 |
-
]
|
58 |
-
output_text = PROCESSOR.batch_decode(
|
59 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
60 |
-
)
|
61 |
-
st.subheader("Extracted Text:")
|
62 |
-
st.write(output_text)
|
63 |
|
64 |
-
# Keyword search functionality
|
65 |
st.subheader("Keyword Search")
|
66 |
search_query = st.text_input("Enter keywords to search within the extracted text")
|
67 |
|
68 |
if search_query:
|
69 |
-
# Check if the search query is in the
|
70 |
-
if search_query.lower() in
|
71 |
-
|
72 |
-
|
|
|
73 |
else:
|
74 |
st.write("No matching text found.")
|
75 |
else:
|
76 |
-
st.info("Please upload an image to extract text.")
|
|
|
1 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
2 |
from qwen_vl_utils import process_vision_info
|
3 |
import streamlit as st
|
4 |
import torch
|
|
|
12 |
return model, processor
|
13 |
|
14 |
MODEL, PROCESSOR = init_qwen_model()
|
15 |
+
|
16 |
# Streamlit app title
|
17 |
st.title("OCR Image Text Extraction")
|
18 |
|
|
|
23 |
# Open the uploaded image file
|
24 |
image = Image.open(uploaded_file)
|
25 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Add the spinner here while the model is processing
|
28 |
+
with st.spinner("Extracting text..."):
|
29 |
+
messages = [
|
30 |
+
{
|
31 |
+
"role": "user",
|
32 |
+
"content": [
|
33 |
+
{
|
34 |
+
"type": "image",
|
35 |
+
"image": image,
|
36 |
+
},
|
37 |
+
{"type": "text", "text": "Run Optical Character recognition on the image."},
|
38 |
+
],
|
39 |
+
}
|
40 |
+
]
|
41 |
+
|
42 |
+
# Preparation for inference
|
43 |
+
text = PROCESSOR.apply_chat_template(
|
44 |
+
messages, tokenize=False, add_generation_prompt=True
|
45 |
+
)
|
46 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
47 |
+
inputs = PROCESSOR(
|
48 |
+
text=[text],
|
49 |
+
images=image_inputs,
|
50 |
+
videos=video_inputs,
|
51 |
+
padding=True,
|
52 |
+
return_tensors="pt",
|
53 |
+
)
|
54 |
+
inputs = inputs.to("cpu")
|
55 |
+
|
56 |
+
# Inference: Generation of the output
|
57 |
+
generated_ids = MODEL.generate(**inputs, max_new_tokens=128)
|
58 |
+
generated_ids_trimmed = [
|
59 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
60 |
+
]
|
61 |
+
structured_output = PROCESSOR.batch_decode(
|
62 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
63 |
+
)[0]
|
64 |
+
|
65 |
+
# Convert structured output to plain text
|
66 |
+
plain_text_output = " ".join(structured_output.split()) # Remove any extra spaces or line breaks
|
67 |
|
68 |
+
# Display extracted plain text after the spinner ends
|
69 |
+
st.subheader("Extracted Plain Text:")
|
70 |
+
st.write(plain_text_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Keyword search functionality on plain text
|
73 |
st.subheader("Keyword Search")
|
74 |
search_query = st.text_input("Enter keywords to search within the extracted text")
|
75 |
|
76 |
if search_query:
|
77 |
+
# Check if the search query is in the plain text output
|
78 |
+
if search_query.lower() in plain_text_output.lower():
|
79 |
+
# Highlight the search query in the plain text
|
80 |
+
highlighted_text = plain_text_output.replace(search_query, f"**{search_query}**", flags=re.IGNORECASE)
|
81 |
+
st.markdown(f"Matching Text: {highlighted_text}", unsafe_allow_html=True)
|
82 |
else:
|
83 |
st.write("No matching text found.")
|
84 |
else:
|
85 |
+
st.info("Please upload an image to extract text.")
|