Spaces:
Running
Running
Saurabh Kumar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,26 +4,16 @@ import streamlit as st
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
|
7 |
-
#
|
8 |
@st.cache_resource
|
9 |
def init_qwen_model():
|
10 |
_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto")
|
11 |
_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
12 |
return _model, _processor
|
13 |
-
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
14 |
-
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
15 |
-
# "Qwen/Qwen2-VL-7B-Instruct",
|
16 |
-
# torch_dtype=torch.bfloat16,
|
17 |
-
# attn_implementation="flash_attention_2",
|
18 |
-
# device_map="auto",
|
19 |
-
# )
|
20 |
-
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
21 |
-
# min_pixels = 256*28*28
|
22 |
-
# max_pixels = 1280*28*28
|
23 |
-
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
24 |
|
|
|
25 |
@st.cache_data
|
26 |
-
def get_qwen_text(uploaded_file):
|
27 |
if uploaded_file is not None:
|
28 |
# Open the uploaded image file
|
29 |
image = Image.open(uploaded_file)
|
@@ -69,23 +59,27 @@ def get_qwen_text(uploaded_file):
|
|
69 |
# Streamlit app title
|
70 |
st.title("OCR Image Text Extraction")
|
71 |
|
|
|
72 |
MODEL, PROCESSOR = init_qwen_model()
|
73 |
|
74 |
# File uploader for images
|
75 |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
-
# Keyword search functionality
|
82 |
-
st.subheader("Keyword Search")
|
83 |
-
search_query = st.text_input("Enter keywords to search within the extracted text")
|
84 |
|
85 |
-
if search_query:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
|
7 |
+
# Default: Load the model on the available device(s)
|
8 |
@st.cache_resource
|
9 |
def init_qwen_model():
|
10 |
_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto")
|
11 |
_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
12 |
return _model, _processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Modified function to use only the image as the argument
|
15 |
@st.cache_data
|
16 |
+
def get_qwen_text(uploaded_file, model, processor):
|
17 |
if uploaded_file is not None:
|
18 |
# Open the uploaded image file
|
19 |
image = Image.open(uploaded_file)
|
|
|
59 |
# Streamlit app title
|
60 |
st.title("OCR Image Text Extraction")
|
61 |
|
62 |
+
# Initialize the model and processor
|
63 |
MODEL, PROCESSOR = init_qwen_model()
|
64 |
|
65 |
# File uploader for images
|
66 |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
67 |
|
68 |
+
if uploaded_file:
|
69 |
+
st.subheader("Extracted Text:")
|
70 |
+
output = get_qwen_text(uploaded_file, MODEL, PROCESSOR)
|
71 |
+
st.write(output)
|
72 |
|
73 |
+
# Keyword search functionality
|
74 |
+
st.subheader("Keyword Search")
|
75 |
+
search_query = st.text_input("Enter keywords to search within the extracted text")
|
76 |
|
77 |
+
if search_query:
|
78 |
+
# Check if the search query is in the extracted text
|
79 |
+
if search_query.lower() in output.lower():
|
80 |
+
highlighted_text = output.replace(search_query, f"**{search_query}**")
|
81 |
+
st.write(f"Matching Text: {highlighted_text}")
|
82 |
+
else:
|
83 |
+
st.write("No matching text found.")
|
84 |
+
else:
|
85 |
+
st.info("Please upload an image to extract text.")
|