Spaces:
Running
Running
Saurabh Kumar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,59 +11,56 @@ def init_qwen_model():
|
|
11 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
12 |
return model, processor
|
13 |
|
14 |
-
def get_qwen_text(uploaded_file, model, processor):
|
15 |
-
if uploaded_file is not None:
|
16 |
-
# Open the uploaded image file
|
17 |
-
image = Image.open(uploaded_file)
|
18 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
19 |
-
|
20 |
-
messages = [
|
21 |
-
{
|
22 |
-
"role": "user",
|
23 |
-
"content": [
|
24 |
-
{
|
25 |
-
"type": "image",
|
26 |
-
"image": image,
|
27 |
-
},
|
28 |
-
{"type": "text", "text": "Run Optical Character recognition on the image."},
|
29 |
-
],
|
30 |
-
}
|
31 |
-
]
|
32 |
-
|
33 |
-
# Preparation for inference
|
34 |
-
text = processor.apply_chat_template(
|
35 |
-
messages, tokenize=False, add_generation_prompt=True
|
36 |
-
)
|
37 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
38 |
-
inputs = processor(
|
39 |
-
text=[text],
|
40 |
-
images=image_inputs,
|
41 |
-
videos=video_inputs,
|
42 |
-
padding=True,
|
43 |
-
return_tensors="pt",
|
44 |
-
)
|
45 |
-
inputs = inputs.to("cpu")
|
46 |
-
|
47 |
-
# Inference: Generation of the output
|
48 |
-
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
49 |
-
generated_ids_trimmed = [
|
50 |
-
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
51 |
-
]
|
52 |
-
output_text = processor.batch_decode(
|
53 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
54 |
-
)
|
55 |
-
return output_text
|
56 |
-
|
57 |
# Streamlit app title
|
58 |
st.title("OCR Image Text Extraction")
|
59 |
|
60 |
# File uploader for images
|
61 |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
st.subheader("Extracted Text:")
|
65 |
-
|
66 |
-
st.write(output)
|
67 |
|
68 |
# Keyword search functionality
|
69 |
st.subheader("Keyword Search")
|
|
|
11 |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
12 |
return model, processor
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Streamlit app title
|
15 |
st.title("OCR Image Text Extraction")
|
16 |
|
17 |
# File uploader for images
|
18 |
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
19 |
|
20 |
+
MODEL, PROCESSOR = init_qwen_model()
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
# Open the uploaded image file
|
24 |
+
image = Image.open(uploaded_file)
|
25 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
26 |
+
|
27 |
+
messages = [
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{
|
32 |
+
"type": "image",
|
33 |
+
"image": image,
|
34 |
+
},
|
35 |
+
{"type": "text", "text": "Run Optical Character recognition on the image."},
|
36 |
+
],
|
37 |
+
}
|
38 |
+
]
|
39 |
+
|
40 |
+
# Preparation for inference
|
41 |
+
text = PROCESSOR.apply_chat_template(
|
42 |
+
messages, tokenize=False, add_generation_prompt=True
|
43 |
+
)
|
44 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
45 |
+
inputs = processor(
|
46 |
+
text=[text],
|
47 |
+
images=image_inputs,
|
48 |
+
videos=video_inputs,
|
49 |
+
padding=True,
|
50 |
+
return_tensors="pt",
|
51 |
+
)
|
52 |
+
inputs = inputs.to("cpu")
|
53 |
+
|
54 |
+
# Inference: Generation of the output
|
55 |
+
generated_ids = MODEL.generate(**inputs, max_new_tokens=128)
|
56 |
+
generated_ids_trimmed = [
|
57 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
58 |
+
]
|
59 |
+
output_text = PROCESSOR.batch_decode(
|
60 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
61 |
+
)
|
62 |
st.subheader("Extracted Text:")
|
63 |
+
st.write(output_text)
|
|
|
64 |
|
65 |
# Keyword search functionality
|
66 |
st.subheader("Keyword Search")
|