|
|
|
|
|
|
|
import gradio as gr |
|
import base64 |
|
import requests |
|
import json |
|
import re |
|
import os |
|
import uuid |
|
from datetime import datetime |
|
import tempfile |
|
import shutil |
|
import time |
|
|
|
|
|
try: |
|
import fitz |
|
PYMUPDF_AVAILABLE = True |
|
except ImportError: |
|
PYMUPDF_AVAILABLE = False |
|
print("Warning: PyMuPDF not found. PDF processing will be disabled.") |
|
|
|
try: |
|
import docx |
|
from PIL import Image, ImageDraw, ImageFont |
|
DOCX_AVAILABLE = True |
|
except ImportError: |
|
DOCX_AVAILABLE = False |
|
print("Warning: python-docx or Pillow not found. DOCX processing will be disabled.") |
|
try: |
|
from deepface import DeepFace |
|
|
|
DEEPFACE_AVAILABLE = True |
|
print(f"Got DeepFace") |
|
except ImportError: |
|
DEEPFACE_AVAILABLE = False |
|
print("Warning: deepface library not found. Facial recognition features will be disabled.") |
|
|
|
class DeepFaceMock: |
|
def represent(self, *args, **kwargs): return [] |
|
def verify(self, *args, **kwargs): return {'verified': False, 'distance': float('inf')} |
|
def detectFace(self, *args, **kwargs): raise NotImplementedError("DeepFace not installed") |
|
DeepFace = DeepFaceMock() |
|
|
|
|
|
|
|
OPENROUTER_API_KEY = "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" |
|
IMAGE_MODEL = "opengvlab/internvl3-14b:free" |
|
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions" |
|
|
|
|
|
FACE_DETECTOR_BACKEND = 'retinaface' |
|
FACE_RECOGNITION_MODEL_NAME = 'VGG-Face' |
|
|
|
|
|
|
|
FACE_SIMILARITY_THRESHOLD = 0.60 |
|
|
|
|
|
|
|
|
|
|
|
processed_files_data = [] |
|
person_profiles = {} |
|
|
|
|
|
|
|
def render_text_to_image(text, output_path): |
|
"""Renders a string of text onto a new image file.""" |
|
if not DOCX_AVAILABLE: |
|
raise ImportError("Pillow or python-docx is not installed.") |
|
|
|
try: |
|
|
|
font = ImageFont.truetype("DejaVuSans.ttf", 15) |
|
except IOError: |
|
print("Default font not found, using basic PIL font.") |
|
font = ImageFont.load_default() |
|
|
|
padding = 20 |
|
image_width = 800 |
|
|
|
|
|
lines = [] |
|
for paragraph in text.split('\n'): |
|
words = paragraph.split() |
|
line = "" |
|
for word in words: |
|
|
|
if hasattr(font, 'getbbox'): |
|
box = font.getbbox(line + word) |
|
line_width = box[2] - box[0] |
|
else: |
|
line_width = font.getsize(line + word)[0] |
|
|
|
if line_width <= image_width - 2 * padding: |
|
line += word + " " |
|
else: |
|
lines.append(line.strip()) |
|
line = word + " " |
|
lines.append(line.strip()) |
|
|
|
|
|
_, top, _, bottom = font.getbbox("A") |
|
line_height = bottom - top + 5 |
|
image_height = len(lines) * line_height + 2 * padding |
|
|
|
img = Image.new('RGB', (image_width, int(image_height)), color='white') |
|
draw = ImageDraw.Draw(img) |
|
|
|
y = padding |
|
for line in lines: |
|
draw.text((padding, y), line, font=font, fill='black') |
|
y += line_height |
|
|
|
img.save(output_path, format='PNG') |
|
|
|
|
|
def convert_file_to_images(original_filepath, temp_output_dir): |
|
""" |
|
Converts an uploaded file (PDF, DOCX) into one or more images. |
|
If the file is already an image, it returns its own path. |
|
Returns a list of dictionaries, each with 'path' and 'page' keys. |
|
""" |
|
filename_lower = original_filepath.lower() |
|
output_paths = [] |
|
|
|
if filename_lower.endswith('.pdf'): |
|
if not PYMUPDF_AVAILABLE: |
|
raise RuntimeError("PDF processing is disabled (PyMuPDF not installed).") |
|
doc = fitz.open(original_filepath) |
|
for i, page in enumerate(doc): |
|
pix = page.get_pixmap(dpi=200) |
|
output_filepath = os.path.join(temp_output_dir, f"{os.path.basename(original_filepath)}_page_{i+1}.png") |
|
pix.save(output_filepath) |
|
output_paths.append({"path": output_filepath, "page": i + 1}) |
|
doc.close() |
|
|
|
elif filename_lower.endswith('.docx'): |
|
if not DOCX_AVAILABLE: |
|
raise RuntimeError("DOCX processing is disabled (python-docx or Pillow not installed).") |
|
doc = docx.Document(original_filepath) |
|
full_text = "\n".join([para.text for para in doc.paragraphs]) |
|
if not full_text.strip(): |
|
full_text = "--- Document is empty or contains only images/tables ---" |
|
output_filepath = os.path.join(temp_output_dir, f"{os.path.basename(original_filepath)}.png") |
|
render_text_to_image(full_text, output_filepath) |
|
output_paths.append({"path": output_filepath, "page": 1}) |
|
|
|
elif filename_lower.endswith(('.png', '.jpg', '.jpeg', '.webp', '.bmp', '.tiff')): |
|
|
|
output_paths.append({"path": original_filepath, "page": 1}) |
|
|
|
else: |
|
raise TypeError(f"Unsupported file type: {os.path.basename(original_filepath)}") |
|
|
|
return output_paths |
|
|
|
|
|
def extract_json_from_text(text): |
|
if not text: |
|
return {"error": "Empty text provided for JSON extraction."} |
|
match_block = re.search(r"```json\s*(\{.*?\})\s*```", text, re.DOTALL | re.IGNORECASE) |
|
if match_block: |
|
json_str = match_block.group(1) |
|
else: |
|
text_stripped = text.strip() |
|
if text_stripped.startswith("`") and text_stripped.endswith("`"): |
|
json_str = text_stripped[1:-1] |
|
else: |
|
json_str = text_stripped |
|
try: |
|
return json.loads(json_str) |
|
except json.JSONDecodeError as e: |
|
try: |
|
first_brace = json_str.find('{') |
|
last_brace = json_str.rfind('}') |
|
if first_brace != -1 and last_brace != -1 and last_brace > first_brace: |
|
potential_json_str = json_str[first_brace : last_brace+1] |
|
return json.loads(potential_json_str) |
|
else: |
|
return {"error": f"Invalid JSON structure (no outer braces found): {str(e)}", "original_text": text} |
|
except json.JSONDecodeError as e2: |
|
return {"error": f"Invalid JSON structure after attempting substring: {str(e2)}", "original_text": text} |
|
|
|
def get_ocr_prompt(): |
|
|
|
return f"""You are an advanced OCR and information extraction AI. |
|
Your task is to meticulously analyze this image and extract all relevant information. |
|
|
|
Output Format Instructions: |
|
Provide your response as a SINGLE, VALID JSON OBJECT. Do not include any explanatory text before or after the JSON. |
|
The JSON object should have the following top-level keys: |
|
- "document_type_detected": (string) Your best guess of the specific document type (e.g., "Passport Front", "Passport Back", "National ID Card", "Photo of a person", "Hotel Reservation", "Bank Statement"). |
|
- "extracted_fields": (object) A key-value map of all extracted information. Be comprehensive. |
|
- For ALL document types, if a primary person is the subject, try to include: "Primary Person Name", "Full Name". |
|
- List other names found under specific keys like "Guest Name", "Account Holder Name", "Mother's Name", "Spouse's Name". |
|
- Extract critical identifiers like "Passport Number", "Document Number", "ID Number", "Account Number", "Reservation Number" FROM ANY PART OF THE DOCUMENT where they appear. Use consistent key names for these if possible. |
|
- For passports/IDs: "Surname", "Given Names", "Nationality", "Date of Birth", "Sex", "Place of Birth", "Date of Issue", "Date of Expiry". |
|
- For photos: "Description" (e.g., "Portrait of John Doe", "User's profile photo"), "People Present" (array of names if discernible). |
|
- "mrz_data": (object or null) If a Machine Readable Zone (MRZ) is present. |
|
- "full_text_ocr": (string) Concatenation of all text found on the document. |
|
|
|
Extraction Guidelines: |
|
1. Extract "Passport Number" or "Document Number" even from back sides or less prominent areas. |
|
2. Identify and list all prominent names. If one person is clearly the main subject, label their name as "Primary Person Name" or "Full Name". |
|
3. For dates, aim for YYYY-MM-DD. |
|
|
|
Ensure the entire output strictly adheres to the JSON format. |
|
""" |
|
|
|
def call_openrouter_ocr(image_filepath): |
|
|
|
if not OPENROUTER_API_KEY: |
|
return {"error": "OpenRouter API Key not configured."} |
|
try: |
|
with open(image_filepath, "rb") as f: |
|
encoded_image = base64.b64encode(f.read()).decode("utf-8") |
|
mime_type = "image/jpeg" |
|
if image_filepath.lower().endswith(".png"): mime_type = "image/png" |
|
elif image_filepath.lower().endswith(".webp"): mime_type = "image/webp" |
|
data_url = f"data:{mime_type};base64,{encoded_image}" |
|
prompt_text = get_ocr_prompt() |
|
payload = { |
|
"model": IMAGE_MODEL, |
|
"messages": [{"role": "user", "content": [{"type": "text", "text": prompt_text}, {"type": "image_url", "image_url": {"url": data_url}}]}], |
|
"max_tokens": 3500, "temperature": 0.1, |
|
} |
|
headers = { |
|
"Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json", |
|
"HTTP-Referer": os.environ.get("GRADIO_ROOT_PATH", "http://localhost:7860"), |
|
"X-Title": "Gradio Document Processor" |
|
} |
|
response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=180) |
|
response.raise_for_status() |
|
result = response.json() |
|
if "choices" in result and result["choices"]: |
|
raw_content = result["choices"][0]["message"]["content"] |
|
return extract_json_from_text(raw_content) |
|
else: |
|
return {"error": "No 'choices' in API response from OpenRouter.", "details": result} |
|
except requests.exceptions.Timeout: return {"error": "API request timed out."} |
|
except requests.exceptions.RequestException as e: |
|
error_message = f"API Request Error: {str(e)}" |
|
if hasattr(e, 'response') and e.response is not None: error_message += f" Status: {e.response.status_code}, Response: {e.response.text}" |
|
return {"error": error_message} |
|
except Exception as e: return {"error": f"An unexpected error occurred during OCR: {str(e)}"} |
|
|
|
def get_facial_embeddings_with_deepface(image_filepath): |
|
if not DEEPFACE_AVAILABLE: |
|
return {"error": "DeepFace library not installed.", "embeddings": []} |
|
try: |
|
|
|
|
|
|
|
embedding_objs = DeepFace.represent( |
|
img_path=image_filepath, |
|
model_name=FACE_RECOGNITION_MODEL_NAME, |
|
detector_backend=FACE_DETECTOR_BACKEND, |
|
enforce_detection=False, |
|
align=True |
|
) |
|
|
|
embeddings = [obj['embedding'] for obj in embedding_objs if 'embedding' in obj] |
|
if not embeddings: |
|
return {"message": "No face detected or embedding failed.", "embeddings": []} |
|
return {"embeddings": embeddings, "count": len(embeddings)} |
|
except Exception as e: |
|
|
|
|
|
if "could not find any face" in str(e).lower(): |
|
return {"message": "No face detected.", "embeddings": []} |
|
return {"error": f"Facial embedding extraction failed: {str(e)}", "embeddings": []} |
|
|
|
|
|
def extract_entities_from_ocr(ocr_json): |
|
if not ocr_json or not isinstance(ocr_json, dict) or "extracted_fields" not in ocr_json or not isinstance(ocr_json.get("extracted_fields"), dict): |
|
doc_type_from_ocr = "Unknown" |
|
if isinstance(ocr_json, dict): |
|
doc_type_from_ocr = ocr_json.get("document_type_detected", "Unknown (error in OCR)") |
|
return {"name": None, "dob": None, "main_id": None, "doc_type": doc_type_from_ocr, "all_names_roles": []} |
|
|
|
fields = ocr_json["extracted_fields"] |
|
doc_type = ocr_json.get("document_type_detected", "Unknown") |
|
|
|
|
|
|
|
name_keys = [ |
|
"primary person name", "full name", "name", "account holder name", "guest name", |
|
"cardholder name", "policy holder name", "applicant name", "beneficiary name", |
|
"student name", "employee name", "sender name", "receiver name", |
|
"patient name", "traveler name", "customer name", "member name", "user name" |
|
] |
|
dob_keys = ["date of birth", "dob"] |
|
|
|
id_keys = ["passport number", "document number", "id number", "personal no", "member id", "customer id", "account number", "reservation number"] |
|
|
|
extracted_name = None |
|
all_names_roles = [] |
|
|
|
for key in name_keys: |
|
for field_key, value in fields.items(): |
|
if key == field_key.lower(): |
|
if value and isinstance(value, str) and value.strip(): |
|
if not extracted_name: |
|
extracted_name = value.strip() |
|
all_names_roles.append({"name_text": value.strip(), "source_key": field_key}) |
|
|
|
if "people present" in (k.lower() for k in fields.keys()): |
|
people = fields.get([k for k in fields if k.lower() == "people present"][0]) |
|
if isinstance(people, list): |
|
for person_name in people: |
|
if isinstance(person_name, str) and person_name.strip(): |
|
all_names_roles.append({"name_text": person_name.strip(), "source_key": "People Present"}) |
|
if not extracted_name: extracted_name = person_name.strip() |
|
|
|
extracted_dob = None |
|
for key in dob_keys: |
|
for field_key, value in fields.items(): |
|
if key == field_key.lower() and value and isinstance(value, str): |
|
extracted_dob = value.strip() |
|
break |
|
if extracted_dob: break |
|
|
|
extracted_main_id = None |
|
for key in id_keys: |
|
for field_key, value in fields.items(): |
|
if key == field_key.lower() and value and isinstance(value, str): |
|
extracted_main_id = value.replace(" ", "").upper().strip() |
|
break |
|
if extracted_main_id: break |
|
|
|
return { |
|
"name": extracted_name, |
|
"dob": extracted_dob, |
|
"main_id": extracted_main_id, |
|
"doc_type": doc_type, |
|
"all_names_roles": list({tuple(d.items()): d for d in all_names_roles}.values()) |
|
} |
|
|
|
def normalize_name(name): |
|
if not name: return "" |
|
return "".join(filter(str.isalnum, name)).lower() |
|
|
|
def are_faces_similar(emb1_list, emb2_gallery_list): |
|
if not DEEPFACE_AVAILABLE or not emb1_list or not emb2_gallery_list: |
|
return False |
|
|
|
for emb1 in emb1_list: |
|
for emb2 in emb2_gallery_list: |
|
try: |
|
|
|
|
|
result = DeepFace.verify( |
|
img1_path=emb1, |
|
img2_path=emb2, |
|
model_name=FACE_RECOGNITION_MODEL_NAME, |
|
detector_backend=FACE_DETECTOR_BACKEND, |
|
distance_metric='cosine' |
|
) |
|
if result.get("verified", False): |
|
|
|
return True |
|
except Exception as e: |
|
print(f"DeepFace verify error: {e}") |
|
return False |
|
|
|
def get_person_id_and_update_profiles(doc_id, entities, facial_embeddings, current_persons_data, linking_method_log): |
|
main_id = entities.get("main_id") |
|
name = entities.get("name") |
|
dob = entities.get("dob") |
|
|
|
|
|
if main_id: |
|
for p_key, p_data in current_persons_data.items(): |
|
if main_id in p_data.get("ids", set()): |
|
p_data["doc_ids"].add(doc_id) |
|
if name and normalize_name(name) not in p_data["names"]: p_data["names"].add(normalize_name(name)) |
|
if dob and dob not in p_data["dobs"]: p_data["dobs"].add(dob) |
|
if facial_embeddings: p_data["face_gallery"].extend(facial_embeddings) |
|
linking_method_log.append(f"Linked by Main ID ({main_id}) to {p_key}") |
|
return p_key |
|
|
|
new_person_key = f"person_id_{main_id}" |
|
current_persons_data[new_person_key] = { |
|
"display_name": name or f"Person (ID: {main_id})", |
|
"names": {normalize_name(name)} if name else set(), |
|
"dobs": {dob} if dob else set(), |
|
"ids": {main_id}, |
|
"face_gallery": list(facial_embeddings or []), |
|
"doc_ids": {doc_id} |
|
} |
|
linking_method_log.append(f"New person by Main ID ({main_id}): {new_person_key}") |
|
return new_person_key |
|
|
|
|
|
if facial_embeddings: |
|
for p_key, p_data in current_persons_data.items(): |
|
if are_faces_similar(facial_embeddings, p_data.get("face_gallery", [])): |
|
p_data["doc_ids"].add(doc_id) |
|
if name and normalize_name(name) not in p_data["names"]: p_data["names"].add(normalize_name(name)) |
|
if dob and dob not in p_data["dobs"]: p_data["dobs"].add(dob) |
|
p_data["face_gallery"].extend(facial_embeddings) |
|
linking_method_log.append(f"Linked by Facial Match to {p_key}") |
|
return p_key |
|
|
|
|
|
|
|
if name and dob: |
|
norm_name = normalize_name(name) |
|
for p_key, p_data in current_persons_data.items(): |
|
if norm_name in p_data.get("names", set()) and dob in p_data.get("dobs", set()): |
|
p_data["doc_ids"].add(doc_id) |
|
if facial_embeddings: p_data["face_gallery"].extend(facial_embeddings) |
|
linking_method_log.append(f"Linked by Name+DOB to {p_key}") |
|
return p_key |
|
|
|
new_person_key = f"person_{norm_name}_{dob}_{str(uuid.uuid4())[:4]}" |
|
current_persons_data[new_person_key] = { |
|
"display_name": name, "names": {norm_name}, "dobs": {dob}, "ids": set(), |
|
"face_gallery": list(facial_embeddings or []), "doc_ids": {doc_id} |
|
} |
|
linking_method_log.append(f"New person by Name+DOB: {new_person_key}") |
|
return new_person_key |
|
|
|
|
|
if name: |
|
norm_name = normalize_name(name) |
|
|
|
|
|
|
|
new_person_key = f"person_name_{norm_name}_{str(uuid.uuid4())[:4]}" |
|
current_persons_data[new_person_key] = { |
|
"display_name": name, "names": {norm_name}, "dobs": set(), "ids": set(), |
|
"face_gallery": list(facial_embeddings or []), "doc_ids": {doc_id} |
|
} |
|
linking_method_log.append(f"New person by Name only: {new_person_key}") |
|
return new_person_key |
|
|
|
|
|
generic_person_key = f"unidentified_person_{str(uuid.uuid4())[:6]}" |
|
current_persons_data[generic_person_key] = { |
|
"display_name": f"Unknown Person ({doc_id[:6]})", |
|
"names": set(), "dobs": set(), "ids": set(), |
|
"face_gallery": list(facial_embeddings or []), "doc_ids": {doc_id} |
|
} |
|
linking_method_log.append(f"New Unidentified Person: {generic_person_key}") |
|
return generic_person_key |
|
|
|
|
|
def format_dataframe_data(current_files_data): |
|
df_rows = [] |
|
for f_data in current_files_data: |
|
entities = f_data.get("entities") or {} |
|
face_info = f_data.get("face_analysis_result", {}) or {} |
|
face_detected_status = "Y" if face_info.get("count", 0) > 0 else "N" |
|
if "error" in face_info : face_detected_status = "Error" |
|
elif "message" in face_info and "No face detected" in face_info["message"]: face_detected_status = "N" |
|
|
|
df_rows.append([ |
|
f_data.get("doc_id", "N/A")[:8], |
|
f_data.get("filename", "N/A"), |
|
f_data.get("status", "N/A"), |
|
entities.get("doc_type", "N/A"), |
|
face_detected_status, |
|
entities.get("name", "N/A"), |
|
entities.get("dob", "N/A"), |
|
entities.get("main_id", "N/A"), |
|
f_data.get("assigned_person_key", "N/A"), |
|
f_data.get("linking_method", "N/A") |
|
]) |
|
return df_rows |
|
|
|
def format_persons_markdown(current_persons_data, current_files_data): |
|
if not current_persons_data: return "No persons identified yet." |
|
md_parts = ["## Classified Persons & Documents\n"] |
|
for p_key, p_data in sorted(current_persons_data.items()): |
|
display_name = p_data.get('display_name', p_key) |
|
md_parts.append(f"### Person: {display_name} (Profile Key: {p_key})") |
|
if p_data.get("dobs"): md_parts.append(f"* Known DOB(s): {', '.join(p_data['dobs'])}") |
|
if p_data.get("ids"): md_parts.append(f"* Known ID(s): {', '.join(p_data['ids'])}") |
|
if p_data.get("face_gallery") and len(p_data.get("face_gallery")) > 0: |
|
md_parts.append(f"* Facial Signatures Stored: {len(p_data.get('face_gallery'))}") |
|
md_parts.append("* Documents:") |
|
doc_ids_for_person = sorted(list(p_data.get("doc_ids", set()))) |
|
if doc_ids_for_person: |
|
for doc_id in doc_ids_for_person: |
|
doc_detail = next((f for f in current_files_data if f["doc_id"] == doc_id), None) |
|
if doc_detail: |
|
filename = doc_detail.get("filename", "Unknown File") |
|
doc_entities = doc_detail.get("entities") or {} |
|
doc_type = doc_entities.get("doc_type", "Unknown Type") |
|
linking_method = doc_detail.get("linking_method", "") |
|
md_parts.append(f" - {filename} (`{doc_type}`) {linking_method}") |
|
else: md_parts.append(f" - Document ID: {doc_id[:8]} (details error)") |
|
else: md_parts.append(" - No documents currently assigned.") |
|
md_parts.append("\n---\n") |
|
return "\n".join(md_parts) |
|
|
|
def process_uploaded_files_old(files_list, progress=gr.Progress(track_tqdm=True)): |
|
global processed_files_data, person_profiles |
|
processed_files_data = [] |
|
person_profiles = {} |
|
if not OPENROUTER_API_KEY: |
|
|
|
yield ([["N/A", "ERROR", "API Key Missing", "N/A","N/A", "N/A", "N/A", "N/A","N/A", "N/A"]], "API Key Missing.", "{}", "Error: API Key not set.") |
|
return |
|
if not files_list: |
|
yield ([], "No files uploaded.", "{}", "Upload files to begin.") |
|
return |
|
|
|
|
|
for i, file_obj_path in enumerate(files_list): |
|
doc_uid = str(uuid.uuid4()) |
|
processed_files_data.append({ |
|
"doc_id": doc_uid, |
|
"filename": os.path.basename(file_obj_path), |
|
"filepath": file_obj_path, |
|
"status": "Queued", "ocr_json": None, "entities": None, |
|
"face_analysis_result": None, "facial_embeddings": None, |
|
"assigned_person_key": None, "linking_method": "" |
|
}) |
|
|
|
df_data = format_dataframe_data(processed_files_data) |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
yield (df_data, persons_md, "{}", f"Initialized {len(files_list)} files.") |
|
|
|
for i, file_data_item in enumerate(progress.tqdm(processed_files_data, desc="Processing Documents")): |
|
current_doc_id = file_data_item["doc_id"] |
|
current_filename = file_data_item["filename"] |
|
linking_method_log_for_doc = [] |
|
|
|
if not file_data_item["filepath"] or not os.path.exists(file_data_item["filepath"]): |
|
file_data_item["status"] = "Error: Invalid file" |
|
linking_method_log_for_doc.append("File path error.") |
|
file_data_item["linking_method"] = " ".join(linking_method_log_for_doc) |
|
df_data = format_dataframe_data(processed_files_data) |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
yield(df_data, persons_md, "{}", f"({i+1}/{len(processed_files_data)}) Error for {current_filename}") |
|
continue |
|
|
|
|
|
file_data_item["status"] = "OCR..." |
|
df_data = format_dataframe_data(processed_files_data); yield (df_data, persons_md, file_data_item.get("ocr_json_str","{}"), f"OCR: {current_filename}") |
|
ocr_result = call_openrouter_ocr(file_data_item["filepath"]) |
|
file_data_item["ocr_json"] = ocr_result |
|
if "error" in ocr_result: |
|
file_data_item["status"] = f"OCR Err: {str(ocr_result['error'])[:30]}.." |
|
linking_method_log_for_doc.append("OCR Failed.") |
|
file_data_item["linking_method"] = " ".join(linking_method_log_for_doc) |
|
df_data = format_dataframe_data(processed_files_data); yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"OCR Err: {current_filename}") |
|
continue |
|
file_data_item["status"] = "OCR OK. Entities..." |
|
df_data = format_dataframe_data(processed_files_data); yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"Entities: {current_filename}") |
|
|
|
|
|
entities = extract_entities_from_ocr(ocr_result) |
|
file_data_item["entities"] = entities |
|
file_data_item["status"] = "Entities OK. Face..." |
|
df_data = format_dataframe_data(processed_files_data); yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"Face Detect: {current_filename}") |
|
|
|
|
|
doc_type_lower = (entities.get("doc_type") or "").lower() |
|
|
|
if DEEPFACE_AVAILABLE and ("photo" in doc_type_lower or "passport" in doc_type_lower or "id card" in doc_type_lower or "selfie" in doc_type_lower): |
|
face_result = get_facial_embeddings_with_deepface(file_data_item["filepath"]) |
|
file_data_item["face_analysis_result"] = face_result |
|
if "embeddings" in face_result and face_result["embeddings"]: |
|
file_data_item["facial_embeddings"] = face_result["embeddings"] |
|
file_data_item["status"] = f"Face OK ({face_result.get('count',0)}). Classify..." |
|
linking_method_log_for_doc.append(f"{face_result.get('count',0)} face(s).") |
|
elif "error" in face_result: |
|
file_data_item["status"] = f"Face Err: {face_result['error'][:20]}.." |
|
linking_method_log_for_doc.append("Face Ext. Error.") |
|
else: |
|
file_data_item["status"] = "No Face. Classify..." |
|
linking_method_log_for_doc.append("No face det.") |
|
else: |
|
file_data_item["status"] = "No Face Ext. Classify..." |
|
linking_method_log_for_doc.append("Face Ext. Skipped.") |
|
df_data = format_dataframe_data(processed_files_data); yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"Classifying: {current_filename}") |
|
|
|
|
|
person_key = get_person_id_and_update_profiles(current_doc_id, entities, file_data_item.get("facial_embeddings"), person_profiles, linking_method_log_for_doc) |
|
file_data_item["assigned_person_key"] = person_key |
|
file_data_item["status"] = "Classified" |
|
file_data_item["linking_method"] = " ".join(linking_method_log_for_doc) |
|
|
|
df_data = format_dataframe_data(processed_files_data) |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
yield (df_data, persons_md, json.dumps(ocr_result, indent=2), f"Done: {current_filename} -> {person_key}") |
|
|
|
final_df_data = format_dataframe_data(processed_files_data) |
|
final_persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
yield (final_df_data, final_persons_md, "{}", f"All {len(processed_files_data)} documents processed.") |
|
|
|
def process_uploaded_files(files_list, progress=gr.Progress(track_tqdm=True)): |
|
global processed_files_data, person_profiles |
|
processed_files_data = [] |
|
person_profiles = {} |
|
temp_dir = tempfile.mkdtemp() |
|
|
|
empty_df_row = [["N/A"] * 11] |
|
if not OPENROUTER_API_KEY: |
|
yield (empty_df_row, "API Key Missing.", "{}", "Error: API Key not set.") |
|
shutil.rmtree(temp_dir) |
|
return |
|
if not files_list: |
|
yield ([], "No files uploaded.", "{}", "Upload files to begin.") |
|
shutil.rmtree(temp_dir) |
|
return |
|
|
|
|
|
job_queue = [] |
|
for original_file_obj in progress.tqdm(files_list, desc="Pre-processing Files"): |
|
try: |
|
image_page_list = convert_file_to_images(original_file_obj.name, temp_dir) |
|
total_pages = len(image_page_list) |
|
for item in image_page_list: |
|
job_queue.append({ |
|
"original_filename": os.path.basename(original_file_obj.name), |
|
"page_number": item["page"], |
|
"total_pages": total_pages, |
|
"image_path": item["path"] |
|
}) |
|
except Exception as e: |
|
job_queue.append({"original_filename": os.path.basename(original_file_obj.name), "error": str(e)}) |
|
|
|
for job in job_queue: |
|
if "error" in job: |
|
processed_files_data.append({ |
|
"doc_id": str(uuid.uuid4()), |
|
"original_filename": job["original_filename"], |
|
"page_number": 1, |
|
"status": f"Error: {job['error']}" |
|
}) |
|
else: |
|
processed_files_data.append({ |
|
"doc_id": str(uuid.uuid4()), |
|
"original_filename": job["original_filename"], |
|
"page_number": job["page_number"], |
|
"total_pages": job["total_pages"], |
|
"filepath": job["image_path"], |
|
"status": "Queued", |
|
"ocr_json": None, |
|
"entities": None, |
|
"face_analysis_result": None, |
|
"facial_embeddings": None, |
|
"assigned_person_key": None, |
|
"linking_method": "" |
|
}) |
|
|
|
initial_df_data = format_dataframe_data(processed_files_data) |
|
initial_persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
yield (initial_df_data, initial_persons_md, "{}", f"Pre-processing complete. Analyzing {len(processed_files_data)} pages.") |
|
|
|
|
|
current_ocr_json_display = "{}" |
|
for i, file_data_item in enumerate(progress.tqdm(processed_files_data, desc="Analyzing Pages")): |
|
if file_data_item["status"].startswith("Error"): |
|
continue |
|
|
|
current_filename = f"{file_data_item['original_filename']} (p.{file_data_item['page_number']})" |
|
linking_method_log_for_doc = [] |
|
|
|
|
|
file_data_item["status"] = "OCR..." |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
df_data = format_dataframe_data(processed_files_data) |
|
yield (df_data, persons_md, current_ocr_json_display, f"OCR: {current_filename}") |
|
|
|
ocr_result = call_openrouter_ocr(file_data_item["filepath"]) |
|
file_data_item["ocr_json"] = ocr_result |
|
current_ocr_json_display = json.dumps(ocr_result, indent=2) |
|
|
|
if "error" in ocr_result: |
|
file_data_item["status"] = f"OCR Err: {str(ocr_result['error'])[:30]}.." |
|
linking_method_log_for_doc.append("OCR Failed.") |
|
file_data_item["linking_method"] = " ".join(linking_method_log_for_doc) |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
df_data = format_dataframe_data(processed_files_data) |
|
yield (df_data, persons_md, current_ocr_json_display, f"OCR Err: {current_filename}") |
|
continue |
|
|
|
|
|
file_data_item["status"] = "OCR OK. Entities..." |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
df_data = format_dataframe_data(processed_files_data) |
|
yield (df_data, persons_md, current_ocr_json_display, f"Entities: {current_filename}") |
|
entities = extract_entities_from_ocr(ocr_result) |
|
file_data_item["entities"] = entities |
|
|
|
|
|
file_data_item["status"] = "Entities OK. Face..." |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
df_data = format_dataframe_data(processed_files_data) |
|
yield (df_data, persons_md, current_ocr_json_display, f"Face Detect: {current_filename}") |
|
doc_type_lower = (entities.get("doc_type") or "").lower() |
|
|
|
if DEEPFACE_AVAILABLE and ( |
|
"photo" in doc_type_lower or |
|
"passport" in doc_type_lower or |
|
"id" in doc_type_lower or |
|
"selfie" in doc_type_lower or |
|
not doc_type_lower |
|
): |
|
face_result = get_facial_embeddings_with_deepface(file_data_item["filepath"]) |
|
file_data_item["face_analysis_result"] = face_result |
|
if "embeddings" in face_result and face_result["embeddings"]: |
|
file_data_item["facial_embeddings"] = face_result["embeddings"] |
|
linking_method_log_for_doc.append(f"{face_result.get('count', 0)} face(s).") |
|
elif "error" in face_result: |
|
linking_method_log_for_doc.append("Face Ext. Error.") |
|
else: |
|
linking_method_log_for_doc.append("No face det.") |
|
else: |
|
linking_method_log_for_doc.append("Face Ext. Skipped.") |
|
|
|
file_data_item["status"] = "Face Done. Classify..." |
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
df_data = format_dataframe_data(processed_files_data) |
|
yield (df_data, persons_md, current_ocr_json_display, f"Classifying: {current_filename}") |
|
|
|
|
|
person_key = get_person_id_and_update_profiles( |
|
file_data_item["doc_id"], |
|
entities, |
|
file_data_item.get("facial_embeddings"), |
|
person_profiles, |
|
linking_method_log_for_doc |
|
) |
|
file_data_item["assigned_person_key"] = person_key |
|
file_data_item["status"] = "Classified" |
|
file_data_item["linking_method"] = " ".join(linking_method_log_for_doc) |
|
|
|
persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
df_data = format_dataframe_data(processed_files_data) |
|
yield (df_data, persons_md, current_ocr_json_display, f"Done: {current_filename} -> {person_key}") |
|
|
|
|
|
final_df_data = format_dataframe_data(processed_files_data) |
|
final_persons_md = format_persons_markdown(person_profiles, processed_files_data) |
|
yield (final_df_data, final_persons_md, "{}", f"All {len(processed_files_data)} pages analyzed.") |
|
|
|
|
|
try: |
|
shutil.rmtree(temp_dir) |
|
print(f"Cleaned up temporary directory: {temp_dir}") |
|
except Exception as e: |
|
print(f"Error cleaning up temporary directory {temp_dir}: {e}") |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# 📄 Intelligent Document Processor & Classifier v2 (with Face ID)") |
|
gr.Markdown( |
|
"**Upload multiple documents. The system will OCR, extract entities & faces, and classify documents by person.**\n" |
|
"Ensure `OPENROUTER_API_KEY` is set as a Secret. Facial recognition uses `deepface` ('VGG-Face' model, 'retinaface' detector)." |
|
) |
|
if not OPENROUTER_API_KEY: gr.Markdown("<h3 style='color:red;'>⚠️ ERROR: `OPENROUTER_API_KEY` Secret missing! OCR will fail.</h3>") |
|
if not DEEPFACE_AVAILABLE: gr.Markdown("<h3 style='color:orange;'>⚠️ WARNING: `deepface` library not installed. Facial recognition features are disabled.</h3>") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
files_input = gr.Files(label="Upload Document Images (Bulk)", file_count="multiple", type="filepath") |
|
process_button = gr.Button("Process Uploaded Documents", variant="primary") |
|
with gr.Column(scale=2): |
|
overall_status_textbox = gr.Textbox(label="Current Task & Overall Progress", interactive=False, lines=2) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Document Processing Details") |
|
dataframe_headers = ["Doc ID", "Filename", "Status", "Type", "Face?", "Name", "DOB", "Main ID", "Person Key", "Linking Method"] |
|
document_status_df = gr.Dataframe( |
|
headers=dataframe_headers, datatype=["str"] * len(dataframe_headers), |
|
label="Individual Document Status & Extracted Entities", |
|
row_count=(1, "dynamic"), col_count=(len(dataframe_headers), "fixed"), wrap=True |
|
) |
|
|
|
with gr.Accordion("Selected Document Full OCR JSON", open=False): |
|
ocr_json_output = gr.Code(label="OCR JSON", language="json", interactive=False) |
|
|
|
gr.Markdown("---") |
|
person_classification_output_md = gr.Markdown("## Classified Persons & Documents\nNo persons identified yet.") |
|
|
|
process_button.click( |
|
fn=process_uploaded_files, inputs=[files_input], |
|
outputs=[document_status_df, person_classification_output_md, ocr_json_output, overall_status_textbox] |
|
) |
|
|
|
@document_status_df.select(inputs=None, outputs=ocr_json_output, show_progress="hidden") |
|
def display_selected_ocr(evt: gr.SelectData): |
|
if evt.index is None or evt.index[0] is None: return "{}" |
|
selected_row_index = evt.index[0] |
|
|
|
if 0 <= selected_row_index < len(processed_files_data): |
|
selected_doc_data = processed_files_data[selected_row_index] |
|
if selected_doc_data and selected_doc_data.get("ocr_json"): |
|
ocr_data_to_display = selected_doc_data["ocr_json"] |
|
return json.dumps(ocr_data_to_display, indent=2, ensure_ascii=False) |
|
return json.dumps({"message": "No OCR data or selection out of bounds."}, indent=2) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(debug=True, share=os.environ.get("GRADIO_SHARE", "true").lower() == "true") |