Sandy2636
Update space
3d827ec
raw
history blame
17.5 kB
import gradio as gr
import requests
import base64
import os
import json
import mimetypes
# --- Configuration ---
# IMPORTANT: Set your OPENROUTER_API_KEY as an environment variable
# For example, in your terminal: export OPENROUTER_API_KEY='your_key_here'
OPENROUTER_API_KEY = "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"
IMAGE_MODEL = "opengvlab/internvl3-14b:free"
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
# --- Application State ---
# Global list to store documents in the current batch
# Each item: {"path": "image_file_path", "type": "document_type_string", "filename": "display_filename"}
current_batch = []
# --- Helper Functions ---
def generate_extraction_prompt(doc_type_provided_by_user):
"""
Generates a detailed prompt for the LLM to extract information
and structure it as a JSON object.
"""
prompt = f"""You are an advanced OCR and information extraction AI.
The user has provided an image and identified it as a '{doc_type_provided_by_user}'.
Your task is to meticulously analyze this image and extract all relevant information.
Output Format Instructions:
Provide your response as a SINGLE, VALID JSON OBJECT. Do not include any explanatory text before or after the JSON.
The JSON object should have the following top-level keys:
- "document_type_provided": (string) The type provided by the user: "{doc_type_provided_by_user}".
- "document_type_detected": (string) Your best guess of the specific document type (e.g., "Passport", "National ID Card", "Driver's License", "Visa Sticker", "Hotel Confirmation Voucher", "Boarding Pass", "Photograph of a person").
- "extracted_fields": (object) A key-value map of all extracted information. Be comprehensive. Examples:
- For passports/IDs: "Surname", "Given Names", "Document Number", "Nationality", "Date of Birth", "Sex", "Place of Birth", "Date of Issue", "Date of Expiry", "Issuing Authority", "Country Code".
- For hotel reservations: "Guest Name", "Hotel Name", "Booking Reference", "Check-in Date", "Check-out Date", "Room Type".
- For photos: "Description" (e.g., "Portrait of a person", "Image contains text: [text if any]").
- "mrz_data": (object or null) If a Machine Readable Zone (MRZ) is present:
- "raw_mrz_lines": (array of strings) Each line of the MRZ.
- "parsed_mrz": (object) Key-value pairs of parsed MRZ fields (e.g., "passport_type", "issuing_country", "surname", "given_names", "passport_number", "nationality", "dob", "sex", "expiry_date", "personal_number").
If no MRZ, this field should be null.
- "multilingual_info": (array of objects or null) For any text segments not in English:
- Each object: {{"language_detected": "ISO 639-1 code", "original_text": "...", "english_translation_or_transliteration": "..."}}
If no non-English text, this field can be null or an empty array.
- "full_text_ocr": (string) Concatenation of all text found on the document.
Extraction Guidelines:
1. Prioritize accuracy. If unsure about a character or word, indicate uncertainty if possible, or extract the most likely interpretation.
2. Extract all visible text, including small print, stamps, and handwritten annotations if legible.
3. For dates, try to use ISO 8601 format (YYYY-MM-DD) if possible, but retain original format if conversion is ambiguous.
4. If the image is a photo of a person without much text, the "extracted_fields" might contain a description, and "full_text_ocr" might be minimal.
5. If the document is multi-page and only one page is provided, note this if apparent.
Ensure the entire output strictly adheres to the JSON format.
"""
return prompt
def process_single_image_with_openrouter(image_path, doc_type):
"""
Encodes an image, sends it to OpenRouter with a generated prompt,
and attempts to parse the JSON response from the LLM.
"""
if not OPENROUTER_API_KEY:
return {"error": "OpenRouter API key not set.", "document_type_provided": doc_type}
try:
with open(image_path, "rb") as f:
encoded_image_bytes = f.read()
encoded_image_string = base64.b64encode(encoded_image_bytes).decode("utf-8")
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
# Fallback, try to infer from extension or default to common types
ext = os.path.splitext(image_path)[1].lower()
if ext == ".png": mime_type = "image/png"
elif ext == ".jpg" or ext == ".jpeg": mime_type = "image/jpeg"
elif ext == ".webp": mime_type = "image/webp"
else: mime_type = "image/jpeg" # A common default
data_url = f"data:{mime_type};base64,{encoded_image_string}"
prompt_text = generate_extraction_prompt(doc_type)
payload = {
"model": IMAGE_MODEL,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": prompt_text},
{"type": "image_url", "image_url": {"url": data_url}}
]
}
],
"max_tokens": 3000, # Increased for potentially large JSONs
"temperature": 0.1, # Lower temperature for more deterministic output
# "response_format": {"type": "json_object"}, # Uncomment if OpenRouter & model fully support this
# for guaranteed JSON. Prompt is primary method now.
}
headers = {
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"Content-Type": "application/json",
"HTTP-Referer": "https://huggingface.co/spaces/YOUR_SPACE_NAME", # Optional: Replace with your app's URL
"X-Title": "Gradio Document Extractor" # Optional: Replace with your app's name
}
print(f"Sending request to OpenRouter for image: {os.path.basename(image_path)}, type: {doc_type}")
response = requests.post(OPENROUTER_API_URL, headers=headers, json=payload, timeout=120) # 120s timeout
response.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
result = response.json()
print(f"Received response from OpenRouter. Status: {response.status_code}")
if "choices" in result and result["choices"]:
content_text = result["choices"][0]["message"]["content"]
# Try to clean up and parse JSON (models sometimes wrap in markdown)
clean_content = content_text.strip()
if clean_content.startswith("```json"):
clean_content = clean_content[7:]
if clean_content.endswith("```"):
clean_content = clean_content[:-3]
elif clean_content.startswith("`") and clean_content.endswith("`"): # Single backtick
clean_content = clean_content[1:-1]
try:
parsed_json = json.loads(clean_content)
# Ensure document_type_provided is in the root, even if LLM missed it
if "document_type_provided" not in parsed_json:
parsed_json["document_type_provided"] = doc_type
return parsed_json
except json.JSONDecodeError as e:
print(f"JSONDecodeError: {e}. Raw content was:\n{content_text}")
return {
"error": "Failed to parse LLM output as JSON.",
"raw_content_from_llm": content_text,
"document_type_provided": doc_type
}
else:
print(f"No 'choices' in API response: {result}")
return {"error": "No choices in API response.", "details": result, "document_type_provided": doc_type}
except requests.exceptions.Timeout:
print(f"API Request Timeout for {os.path.basename(image_path)}")
return {"error": "API request timed out.", "document_type_provided": doc_type}
except requests.exceptions.RequestException as e:
error_message = f"API Request Error: {str(e)}"
if e.response is not None:
error_message += f" Status: {e.response.status_code}, Response: {e.response.text}"
print(error_message)
return {"error": error_message, "document_type_provided": doc_type}
except Exception as e:
print(f"An unexpected error occurred during processing {os.path.basename(image_path)}: {str(e)}")
return {"error": f"An unexpected error: {str(e)}", "document_type_provided": doc_type}
# --- Gradio Interface Callbacks ---
def add_document_to_batch_ui(image_filepath, doc_type_selection):
"""Adds an uploaded image and its type to the current batch state."""
global current_batch
if image_filepath and doc_type_selection:
filename = os.path.basename(image_filepath)
# Note: image_filepath is a temporary path from Gradio.
# It should be used relatively quickly. For long-lived state,
# you might copy the file or read its content.
current_batch.append({"path": image_filepath, "type": doc_type_selection, "filename": filename})
# Prepare display for Dataframe: list of lists
batch_display_data = [[item["filename"], item["type"]] for item in current_batch]
return batch_display_data, f"Added '{filename}' as '{doc_type_selection}'."
# Return current state if inputs are invalid
batch_display_data = [[item["filename"], item["type"]] for item in current_batch]
return batch_display_data, "Failed to add: Image or document type missing."
def process_batch_ui():
"""Processes all documents in the current batch and returns combined JSON results."""
global current_batch
if not OPENROUTER_API_KEY:
return {"error": "OPENROUTER_API_KEY is not set. Please configure it."}, "API Key Missing."
if not current_batch:
return {"message": "Batch is empty. Add documents first."}, "Batch is empty."
all_results = []
status_updates = []
for i, item_to_process in enumerate(current_batch):
status_msg = f"Processing document {i+1}/{len(current_batch)}: {item_to_process['filename']} ({item_to_process['type']})..."
print(status_msg)
# yield None, status_msg # This would require process_batch_ui to be a generator for live updates
# Ensure the file path is valid; Gradio's temp files should be okay here
# if not os.path.exists(item_to_process["path"]):
# error_res = {"error": f"File not found: {item_to_process['filename']}. It might have been a temporary file that was removed.", "document_type_provided": item_to_process['type']}
# all_results.append(error_res)
# status_updates.append(f"Error: File {item_to_process['filename']} not found.")
# continue
extracted_data = process_single_image_with_openrouter(item_to_process["path"], item_to_process["type"])
all_results.append(extracted_data)
if "error" in extracted_data:
status_updates.append(f"Error processing {item_to_process['filename']}: {extracted_data['error']}")
else:
status_updates.append(f"Successfully processed {item_to_process['filename']}.")
# Attempt to group results by person (heuristic)
# This is a basic grouping; more sophisticated logic could be added.
grouped_by_person = {}
unidentified_docs = []
for result_item in all_results:
doc_id = None
if isinstance(result_item, dict) and "extracted_fields" in result_item and isinstance(result_item["extracted_fields"], dict):
fields = result_item["extracted_fields"]
# Try common identifiers
passport_no = fields.get("Document Number") or fields.get("Passport Number") or fields.get("passport_number")
name = fields.get("Given Names") or fields.get("Given Name") or fields.get("Name")
surname = fields.get("Surname") or fields.get("Family Name")
dob = fields.get("Date of Birth") or fields.get("DOB")
if passport_no:
doc_id = f"passport_{str(passport_no).replace(' ', '').lower()}"
elif name and surname and dob:
doc_id = f"{str(name).replace(' ', '').lower()}_{str(surname).replace(' ', '').lower()}_{str(dob).replace(' ', '')}"
elif name and surname:
doc_id = f"{str(name).replace(' ', '').lower()}_{str(surname).replace(' ', '').lower()}"
if doc_id:
if doc_id not in grouped_by_person:
grouped_by_person[doc_id] = {"person_identifier": doc_id, "documents": []}
grouped_by_person[doc_id]["documents"].append(result_item)
else:
unidentified_docs.append(result_item)
final_structured_output = {
"summary": f"Processed {len(current_batch)} documents.",
"grouped_by_person": list(grouped_by_person.values()) if grouped_by_person else [], # Convert dict to list for easier iteration in JSON
"unidentified_documents_or_errors": unidentified_docs
}
# Do not clear batch here, let user do it.
# current_batch = [] # Clears batch after processing
# batch_display_data = []
final_status = "Batch processing complete. " + " | ".join(status_updates)
print(final_status)
return final_structured_output, final_status # Output JSON and status message
def clear_batch_ui():
"""Clears the current batch and updates the UI."""
global current_batch
current_batch = []
return [], "Batch cleared successfully." # Cleared dataframe and status message
# --- Gradio UI Layout ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“„ Document Information Extractor (OpenGVLab/InternVL3-14B via OpenRouter)")
gr.Markdown(
"**Instructions:**\n"
"1. Upload a document image (e.g., passport front/back, photo, hotel reservation).\n"
"2. Select the correct document type.\n"
"3. Click 'Add Document to Current Batch'. Repeat for all documents of a person or a related set.\n"
"4. Review the batch. Click 'Clear Entire Batch' to start over.\n"
"5. Click 'Process Batch and Extract Information' to send documents to the AI.\n"
"6. View the extracted information in JSON format below."
)
if not OPENROUTER_API_KEY:
gr.Markdown(
"<h3 style='color:red;'>⚠️ Warning: `OPENROUTER_API_KEY` environment variable is not detected. "
"API calls will fail. Please set it and restart this application.</h3>"
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Step 1: Add Document")
image_input = gr.Image(
label="Upload Document Image",
type="filepath", # 'filepath' gives a temporary path to the uploaded file
sources=["upload"],
height=300
)
doc_type_choices = [
'passport_front', 'passport_back', 'national_id_front', 'national_id_back',
'drivers_license_front', 'drivers_license_back', 'visa_sticker',
'photo', 'hotel_reservation', 'boarding_pass', 'utility_bill', 'other_document'
]
doc_type_input = gr.Dropdown(
label="Select Document Type",
choices=doc_type_choices,
value='passport_front',
filterable=True
)
add_button = gr.Button("βž• Add Document to Current Batch", variant="secondary")
with gr.Column(scale=2):
gr.Markdown("### Step 2: Review Current Batch")
batch_dataframe = gr.Dataframe(
headers=["Filename", "Document Type"],
datatype=["str", "str"],
row_count=(0, "dynamic"), # Start with 0 rows, dynamically adjusts
col_count=(2, "fixed"),
wrap=True,
height=380,
)
clear_batch_button = gr.Button("πŸ—‘οΈ Clear Entire Batch", variant="stop")
gr.Markdown("### Step 3: Process Batch")
process_button = gr.Button("πŸš€ Process Batch and Extract Information", variant="primary")
status_message_textbox = gr.Textbox(label="Processing Status", interactive=False, lines=2)
gr.Markdown("### Step 4: View Results")
output_json_display = gr.JSON(label="Extracted Information (JSON Format)")
# --- Connect UI elements to functions ---
add_button.click(
fn=add_document_to_batch_ui,
inputs=[image_input, doc_type_input],
outputs=[batch_dataframe, status_message_textbox]
).then(lambda: None, outputs=image_input) # Clear image input after adding
clear_batch_button.click(
fn=clear_batch_ui,
inputs=[],
outputs=[batch_dataframe, status_message_textbox]
)
process_button.click(
fn=process_batch_ui,
inputs=[],
outputs=[output_json_display, status_message_textbox]
)
if __name__ == "__main__":
if not OPENROUTER_API_KEY:
print("ERROR: The OPENROUTER_API_KEY environment variable is not set.")
print("Please set it before running the application, e.g.:")
print(" export OPENROUTER_API_KEY='your_openrouter_key_here'")
print("The application will launch, but API calls will fail.")
demo.launch()