SauravMaheshkar commited on
Commit
0666b28
·
unverified ·
1 Parent(s): 36181aa

fix?: slice based on max tokens

Browse files
Files changed (2) hide show
  1. README.md +1 -0
  2. app.py +10 -4
README.md CHANGED
@@ -9,4 +9,5 @@ app_file: app.py
9
  pinned: false
10
  short_description: Reason about papers using LLMs
11
  license: agpl-3.0
 
12
  ---
 
9
  pinned: false
10
  short_description: Reason about papers using LLMs
11
  license: agpl-3.0
12
+ models: [HuggingFaceTB/SmolLM2-135M-Instruct]
13
  ---
app.py CHANGED
@@ -5,14 +5,13 @@ import gradio as gr
5
  import torch
6
  import weave
7
  from papersai.utils import load_paper_as_context
8
- from transformers import AutoTokenizer, pipeline
9
 
10
  HistoryType: TypeAlias = List[Dict[str, str]]
11
 
12
  # Initialize the LLM and Weave client
13
  client = weave.init("papersai")
14
  checkpoint: str = "HuggingFaceTB/SmolLM2-135M-Instruct"
15
- tokenizer = AutoTokenizer.from_pretrained(checkpoint)
16
  pipe = pipeline(
17
  model=checkpoint,
18
  torch_dtype=torch.bfloat16,
@@ -65,7 +64,7 @@ def invoke(history: HistoryType):
65
  Returns:
66
  BaseMessage: Response from the model
67
  """
68
- input_text = tokenizer.apply_chat_template(history, tokenize=False)
69
  response = pipe(input_text, do_sample=True, top_p=0.95, max_new_tokens=1024)[0][
70
  "generated_text"
71
  ]
@@ -96,7 +95,14 @@ def update_state(history: HistoryType, message: Optional[Dict[str, str]]):
96
  try:
97
  state.context = load_paper_as_context(file_path=file_path)
98
  doc_context = [x.get_content() for x in state.context]
99
- history.append({"role": "assistant", "content": " ".join(doc_context)})
 
 
 
 
 
 
 
100
  except Exception as e:
101
  history.append(
102
  {"role": "assistant", "content": f"Error loading file: {str(e)}"}
 
5
  import torch
6
  import weave
7
  from papersai.utils import load_paper_as_context
8
+ from transformers import pipeline
9
 
10
  HistoryType: TypeAlias = List[Dict[str, str]]
11
 
12
  # Initialize the LLM and Weave client
13
  client = weave.init("papersai")
14
  checkpoint: str = "HuggingFaceTB/SmolLM2-135M-Instruct"
 
15
  pipe = pipeline(
16
  model=checkpoint,
17
  torch_dtype=torch.bfloat16,
 
64
  Returns:
65
  BaseMessage: Response from the model
66
  """
67
+ input_text = pipe.tokenizer.apply_chat_template(history, tokenize=False)
68
  response = pipe(input_text, do_sample=True, top_p=0.95, max_new_tokens=1024)[0][
69
  "generated_text"
70
  ]
 
95
  try:
96
  state.context = load_paper_as_context(file_path=file_path)
97
  doc_context = [x.get_content() for x in state.context]
98
+ history.append(
99
+ {
100
+ "role": "assistant",
101
+ "content": [" ".join(doc_context)][
102
+ : pipe.model.config.max_position_embeddings
103
+ ],
104
+ }
105
+ )
106
  except Exception as e:
107
  history.append(
108
  {"role": "assistant", "content": f"Error loading file: {str(e)}"}