SauravMaheshkar commited on
Commit
827d7c0
·
unverified ·
1 Parent(s): 9b35e27

fix?: history fmt

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. app.py +10 -4
README.md CHANGED
@@ -9,5 +9,5 @@ app_file: app.py
9
  pinned: false
10
  short_description: Reason about papers using LLMs
11
  license: agpl-3.0
12
- models: [HuggingFaceTB/SmolLM2-135M-Instruct]
13
  ---
 
9
  pinned: false
10
  short_description: Reason about papers using LLMs
11
  license: agpl-3.0
12
+ models: [HuggingFaceTB/SmolLM2-1.7B-Instruct]
13
  ---
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import time
2
  from typing import Dict, List, Optional, TypeAlias
3
 
@@ -7,11 +8,13 @@ import weave
7
  from papersai.utils import load_paper_as_context
8
  from transformers import pipeline
9
 
 
 
10
  HistoryType: TypeAlias = List[Dict[str, str]]
11
 
12
  # Initialize the LLM and Weave client
13
  client = weave.init("papersai")
14
- checkpoint: str = "HuggingFaceTB/SmolLM2-135M-Instruct"
15
  pipe = pipeline(
16
  model=checkpoint,
17
  torch_dtype=torch.bfloat16,
@@ -64,11 +67,14 @@ def invoke(history: HistoryType):
64
  Returns:
65
  BaseMessage: Response from the model
66
  """
67
- input_text = pipe.tokenizer.apply_chat_template(history, tokenize=False)
68
- response = pipe(input_text, do_sample=True, top_p=0.95, max_new_tokens=1024)[0][
 
 
 
69
  "generated_text"
70
  ]
71
- response = response.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[1]
72
  return response
73
 
74
 
 
1
+ import os
2
  import time
3
  from typing import Dict, List, Optional, TypeAlias
4
 
 
8
  from papersai.utils import load_paper_as_context
9
  from transformers import pipeline
10
 
11
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
12
+
13
  HistoryType: TypeAlias = List[Dict[str, str]]
14
 
15
  # Initialize the LLM and Weave client
16
  client = weave.init("papersai")
17
+ checkpoint: str = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
18
  pipe = pipeline(
19
  model=checkpoint,
20
  torch_dtype=torch.bfloat16,
 
67
  Returns:
68
  BaseMessage: Response from the model
69
  """
70
+ input_text = pipe.tokenizer.apply_chat_template(
71
+ history + [{"role": "assistant", "content": f"Context: {state.context}\n"}],
72
+ tokenize=False,
73
+ )
74
+ response = pipe(input_text, do_sample=True, top_p=0.95, max_new_tokens=100)[0][
75
  "generated_text"
76
  ]
77
+ response = response.split("\nassistant\n")[-1]
78
  return response
79
 
80