Spaces:
Running
Running
File size: 1,073 Bytes
41c5156 de2a82e aba41f2 de2a82e aba41f2 41c5156 de2a82e aba41f2 41c5156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import pandas as pd
def clean_lat_long(df) -> pd.DataFrame:
"""
Clean latitude and longitude columns in the DataFrame.
Ensure lat and lon are numeric, coerce errors to NaN
Args:
df (pd.DataFrame): DataFrame containing latitude and longitude columns.
Returns:
pd.DataFrame: DataFrame with cleaned latitude and longitude columns.
"""
df['lat'] = pd.to_numeric(df['lat'], errors='coerce')
df['lon'] = pd.to_numeric(df['lon'], errors='coerce')
# Drop rows with NaN in lat or lon
df = df.dropna(subset=['lat', 'lon']).reset_index(drop=True)
return df
def clean_date(df) -> pd.DataFrame: # Ensure lat and lon are numeric, coerce errors to NaN
"""
Clean date column in the DataFrame.
Args:
df (pd.DataFrame): DataFrame containing date column.
Returns:
pd.DataFrame: DataFrame with cleaned date column.
"""
df['date'] = pd.to_datetime(df['date'], errors='coerce')
# Drop rows with NaN in lat or lon
df = df.dropna(subset=['date']).reset_index(drop=True)
return df |