Spaces:
Running
Running
File size: 8,865 Bytes
2f87aad 581fadf 2f87aad 85c8b0f 2f87aad aba41f2 2f87aad 85c8b0f 2f87aad 581fadf 2f87aad 5c07215 2f87aad 53eb5bc 958b383 53eb5bc 8609001 53eb5bc 2f87aad 53eb5bc 8609001 53eb5bc 2f87aad 53eb5bc 2f87aad 53eb5bc 2f87aad 53eb5bc 2f87aad 85c8b0f 53eb5bc 2f87aad 53eb5bc 2f87aad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import streamlit as st
import os
import pandas as pd
import logging
st.set_page_config(
page_title="ML Models",
page_icon="π₯",
)
from utils.st_logs import init_logging_session_states
from transformers import pipeline
from transformers import AutoModelForImageClassification
from classifier.classifier_image import add_classifier_header
from input.input_handling import setup_input, check_inputs_are_set
from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
from input.input_handling import dbg_show_observation_hashes
from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
from dataset.hf_push_observations import push_all_observations
from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
from classifier.classifier_hotdog import hotdog_classify
############################################################
classifier_name = "Saving-Willy/cetacean-classifier"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
############################################################
g_logger = logging.getLogger(__name__)
# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
# one toggle for all the extra debug text
if "MODE_DEV_STATEFUL" not in st.session_state:
st.session_state.MODE_DEV_STATEFUL = False
############################################################
# Streamlit app
tab_inference, tab_hotdogs= \
st.tabs(["Cetecean classifier", "Hotdog classifier"])
# initialise various session state variables
init_logging_session_states() # logging init should be early
init_workflow_session_states()
init_input_data_session_states()
init_input_container_states()
init_workflow_viz()
init_classifier_session_states()
# put this early so the progress indicator is at the top (also refreshed at end)
refresh_progress_display()
# create a sidebar, and parse all the input (returned as `observations` object)
with st.sidebar:
# layout handling
add_input_UI_elements()
# input elements (file upload, text input, etc)
setup_input()
with tab_inference:
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
# can we advance state? - only when all inputs are set for all uploaded files
all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
if all_inputs_set:
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_complete
else:
# button, disabled; no state change yet.
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
# can we advance state? - only when the validate button is pressed
if st.sidebar.button(":white_check_mark:[**Validate**]"):
# create a dictionary with the submitted observation
g_logger.info(f"{st.session_state.observations}")
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
# with tab_coords:
# st.table(df)
# now disable all the input boxes / widgets
st.session_state.input_disabled = True
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
# hmm, maybe it should actually just be "I'm done with data entry"
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_validated
st.rerun() # refresh so the input widgets are immediately disabled
if st.session_state.MODE_DEV_STATEFUL:
dbg_show_observation_hashes()
add_classifier_header()
# if we are before data_entry_validated, show the button, disabled.
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
help="Please validate inputs before proceeding",
key="button_infer_ceteans")
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
# show the button, enabled. If pressed, we start the ML model (And advance state)
if tab_inference.button("Identify with cetacean classifier",
key="button_infer_ceteans"):
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
classifier_name,
revision=classifier_revision,
trust_remote_code=True)
cetacean_just_classify(cetacean_classifier)
st.session_state.workflow_fsm.complete_current_state()
# trigger a refresh too (refreshhing the prog indicator means the script reruns and
# we can enter the next state - visualising the results / review)
# ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
refresh_progress_display()
#TODO: validate this doesn't harm performance adversely.
st.rerun()
elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
# show the results, and allow manual validation
st.markdown("""### Inference results and manual validation/adjustment """)
if st.session_state.MODE_DEV_STATEFUL:
s = ""
for k, v in st.session_state.whale_prediction1.items():
s += f"* Image {k}: {v}\n"
st.markdown(s)
# add a button to advance the state
if st.button("I have looked over predictions and confirm correct species", icon= "π",
type="primary",
help="Confirm that all species are selected correctly"):
st.session_state.workflow_fsm.complete_current_state()
# -> manual_inspection_completed
st.rerun()
cetacean_show_results_and_review()
elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
# show the ML results, and allow the user to upload the observation
st.markdown("""### Inference Results (after manual validation) """)
if st.button("Upload all observations to THE INTERNET!", icon= "β¬οΈ",
type="primary",):
# let this go through to the push_all func, since it just reports to log for now.
push_all_observations(enable_push=False)
st.session_state.workflow_fsm.complete_current_state()
# -> data_uploaded
st.rerun()
cetacean_show_results()
elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
# the data has been sent. Lets show the observations again
# but no buttons to upload (or greyed out ok)
st.markdown("""### Observation(s) uploaded - thank you!""")
cetacean_show_results()
st.divider()
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
st.table(df)
# didn't decide what the next state is here - I think we are in the terminal state.
#st.session_state.workflow_fsm.complete_current_state()
with tab_hotdogs:
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# purposes, an hotdog image classifier) which will be run locally.
# - this model predicts if the image is a hotdog or not, and returns probabilities
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
tab_hotdogs.title("Hot Dog? Or Not?")
tab_hotdogs.write("""
*Run alternative classifer on input images. Here we are using
a binary classifier - hotdog or not - from
huggingface.co/julien-c/hotdog-not-hotdog.*""")
if tab_hotdogs.button("Get Hotdog Prediction"):
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
if st.session_state.image is None:
st.info("Please upload an image first.")
#st.info(str(observations.to_dict()))
else:
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# after all other processing, we can show the stage/state
refresh_progress_display()
|