rmm
feat: using FSM for full workflow, with some steps mocked
4854d2c
raw
history blame
15.5 kB
import logging
import os
import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium
from transformers import pipeline
from transformers import AutoModelForImageClassification
from maps.obs_map import add_header_text as add_obs_map_header
from classifier.classifier_image import add_header_text as add_classifier_header
from datasets import disable_caching
disable_caching()
import whale_gallery as gallery
import whale_viewer as viewer
from input.input_handling import setup_input, check_inputs_are_set
from maps.alps_map import present_alps_map
from maps.obs_map import present_obs_map
from utils.st_logs import setup_logging, parse_log_buffer
from utils.workflow_state import WorkflowFSM, FSM_STATES
from classifier.classifier_image import cetacean_classify
from classifier.classifier_hotdog import hotdog_classify
# setup for the ML model on huggingface (our wrapper)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
classifier_revision = 'main' # default/latest version
# and the dataset of observations (hf dataset in our space)
dataset_id = "Saving-Willy/temp_dataset"
data_files = "data/train-00000-of-00001.parquet"
USE_BASIC_MAP = False
DEV_SIDEBAR_LIB = True
# get a global var for logger accessor in this module
LOG_LEVEL = logging.DEBUG
g_logger = logging.getLogger(__name__)
g_logger.setLevel(LOG_LEVEL)
st.set_page_config(layout="wide")
# initialise various session state variables
if "handler" not in st.session_state:
st.session_state['handler'] = setup_logging()
if "image_hashes" not in st.session_state:
st.session_state.image_hashes = []
# TODO: ideally just use image_hashes, but need a unique key for the ui elements
# to track the user input phase; and these are created before the hash is generated.
if "image_filenames" not in st.session_state:
st.session_state.image_filenames = []
if "observations" not in st.session_state:
st.session_state.observations = {}
if "images" not in st.session_state:
st.session_state.images = {}
if "files" not in st.session_state:
st.session_state.files = {}
if "public_observation" not in st.session_state:
st.session_state.public_observation = {}
if "classify_whale_done" not in st.session_state:
st.session_state.classify_whale_done = {}
if "whale_prediction1" not in st.session_state:
st.session_state.whale_prediction1 = {}
if "tab_log" not in st.session_state:
st.session_state.tab_log = None
if "workflow_fsm" not in st.session_state:
# create and init the state machine
st.session_state.workflow_fsm = WorkflowFSM(FSM_STATES)
def refresh_progress():
with st.sidebar:
tot = st.session_state.workflow_fsm.num_states - 1
cur_i = st.session_state.workflow_fsm.current_state_index
cur_t = st.session_state.workflow_fsm.current_state
st.session_state.disp_progress[0].markdown(f"*Progress: {cur_i}/{tot}. Current: {cur_t}.*")
st.session_state.disp_progress[1].progress(cur_i/tot)
# add progress indicator to session_state
if "progress" not in st.session_state:
with st.sidebar:
st.session_state.disp_progress = [st.empty(), st.empty()]
# add button to sidebar, with the callback to refesh_progress
st.sidebar.button("Refresh Progress", on_click=refresh_progress)
def main() -> None:
"""
Main entry point to set up the streamlit UI and run the application.
The organisation is as follows:
1. observation input (a new observations) is handled in the sidebar
2. the rest of the interface is organised in tabs:
- cetean classifier
- hotdog classifier
- map to present the obersvations
- table of recent log entries
- gallery of whale images
The majority of the tabs are instantiated from modules. Currently the two
classifiers are still in-line here.
"""
g_logger.info("App started.")
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
#g_logger.debug("debug message")
#g_logger.info("info message")
#g_logger.warning("warning message")
# Streamlit app
tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
st.session_state.tab_log = tab_log
# put this early so the progress indicator is at the top (also refreshed at end)
refresh_progress()
# create a sidebar, and parse all the input (returned as `observations` object)
setup_input(viewcontainer=st.sidebar)
if 0:## WIP
# goal of this code is to allow the user to override the ML prediction, before transmitting an observations
predicted_class = st.sidebar.selectbox("Predicted Class", viewer.WHALE_CLASSES)
override_prediction = st.sidebar.checkbox("Override Prediction")
if override_prediction:
overridden_class = st.sidebar.selectbox("Override Class", viewer.WHALE_CLASSES)
st.session_state.observations['class_overriden'] = overridden_class
else:
st.session_state.observations['class_overriden'] = None
with tab_map:
# visual structure: a couple of toggles at the top, then the map inlcuding a
# dropdown for tileset selection.
add_obs_map_header()
tab_map_ui_cols = st.columns(2)
with tab_map_ui_cols[0]:
show_db_points = st.toggle("Show Points from DB", True)
with tab_map_ui_cols[1]:
dbg_show_extra = st.toggle("Show Extra points (test)", False)
if show_db_points:
# show a nicer map, observations marked, tileset selectable.
st_observation = present_obs_map(
dataset_id=dataset_id, data_files=data_files,
dbg_show_extra=dbg_show_extra)
else:
# development map.
st_observation = present_alps_map()
with tab_log:
handler = st.session_state['handler']
if handler is not None:
records = parse_log_buffer(handler.buffer)
st.dataframe(records[::-1], use_container_width=True,)
st.info(f"Length of records: {len(records)}")
else:
st.error("⚠️ No log handler found!")
with tab_coords:
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
st.markdown("Coming later! :construction:")
st.markdown(
f"""*The goal is to allow interactive definition for the coordinates of a new
observation, by click/drag points on the map.*""")
st.write("Click on the map to capture a location.")
#m = folium.Map(location=visp_loc, zoom_start=7)
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
).add_to(mm)
st_data2 = st_folium(mm, width=725)
st.write("below the map...")
if st_data2['last_clicked'] is not None:
print(st_data2)
st.info(st_data2['last_clicked'])
with tab_gallery:
# here we make a container to allow filtering css properties
# specific to the gallery (otherwise we get side effects)
tg_cont = st.container(key="swgallery")
with tg_cont:
gallery.render_whale_gallery(n_cols=4)
# state handling re data_entry phases
# 0. no data entered yet -> display the file uploader thing
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
# 2. all data entered -> validate button enabled
# 3. validation button pressed, validation done -> enable the inference button.
# - at this point do we also want to disable changes to the metadata selectors?
# anyway, simple first.
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
# can we advance state? - only when all inputs are set for all uploaded files
all_inputs_set = check_inputs_are_set(debug=True)
if all_inputs_set:
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_complete
else:
# button, disabled; no state change yet.
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
# can we advance state? - only when the validate button is pressed
if st.sidebar.button(":white_check_mark:[*Validate*]"):
# create a dictionary with the submitted observation
tab_log.info(f"{st.session_state.observations}")
df = pd.DataFrame(st.session_state.observations, index=[0])
with tab_coords:
st.table(df)
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
# hmm, maybe it should actually just be "I'm done with data entry"
st.session_state.workflow_fsm.complete_current_state()
# -> data_entry_validated
# state handling re inference phases (tab_inference)
# 3. validation button pressed, validation done -> enable the inference button.
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
# make sense if we did it as an async action
# 5. ML done -> show results, and manual validation options
# 6. manual validation done -> enable the upload buttons
#
with tab_inference:
add_classifier_header()
# if we are before data_entry_validated, show the button, disabled.
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
help="Please validate inputs before proceeding",
key="button_infer_ceteans")
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
# show the button, enabled. If pressed, we start the ML model (And advance state)
if tab_inference.button("Identify with cetacean classifier"):
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
"Saving-Willy/cetacean-classifier",
revision=classifier_revision,
trust_remote_code=True)
cetacean_classify(cetacean_classifier)
st.session_state.workflow_fsm.complete_current_state()
if st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
# show the results, and allow manual validation
s = ""
for k, v in st.session_state.whale_prediction1.items():
s += f"* Image {k}: {v}\n"
st.markdown("""
### Inference Results and manual validation/adjustment
:construction: for now we just show the num images processed.
""")
st.markdown(s)
# add a button to advance the state
if st.button("mock: manual validation done."):
st.session_state.workflow_fsm.complete_current_state()
# -> manual_inspection_completed
if st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
# show the ML results, and allow the user to upload the observation
st.markdown("""
### Inference Results (after manual validation)
:construction: for now we just show the button.
""")
if st.button("(nooop) Upload observation to THE INTERNET!"):
st.session_state.workflow_fsm.complete_current_state()
# -> data_uploaded
if st.session_state.workflow_fsm.is_in_state('data_uploaded'):
# the data has been sent. Lets show the observations again
# but no buttons to upload (or greyed out ok)
st.markdown("""
### Observation(s) uploaded
:construction: for now we just show the observations.
""")
df = pd.DataFrame(st.session_state.observations, index=[0])
st.table(df)
# didn't decide what the next state is here - I think we are in the terminal state.
#st.session_state.workflow_fsm.complete_current_state()
# inside the inference tab, on button press we call the model (on huggingface hub)
# which will be run locally.
# - the model predicts the top 3 most likely species from the input image
# - these species are shown
# - the user can override the species prediction using the dropdown
# - an observation is uploaded if the user chooses.
# with tab_inference:
# add_classifier_header()
# if tab_inference.button("Identify with cetacean classifier"):
# #pipe = pipeline("image-classification", model="Saving-Willy/cetacean-classifier", trust_remote_code=True)
# cetacean_classifier = AutoModelForImageClassification.from_pretrained("Saving-Willy/cetacean-classifier",
# revision=classifier_revision,
# trust_remote_code=True)
# if st.session_state.images is None:
# # TODO: cleaner design to disable the button until data input done?
# st.info("Please upload an image first.")
# else:
# cetacean_classify(cetacean_classifier)
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# purposes, an hotdog image classifier) which will be run locally.
# - this model predicts if the image is a hotdog or not, and returns probabilities
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
tab_hotdogs.title("Hot Dog? Or Not?")
tab_hotdogs.write("""
*Run alternative classifer on input images. Here we are using
a binary classifier - hotdog or not - from
huggingface.co/julien-c/hotdog-not-hotdog.*""")
if tab_hotdogs.button("Get Hotdog Prediction"):
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
if st.session_state.image is None:
st.info("Please upload an image first.")
#st.info(str(observations.to_dict()))
else:
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# after all other processing, we can show the stage/state
refresh_progress()
if __name__ == "__main__":
main()