saving-willy-dev / src /old_main.py
vancauwe's picture
feat: content split to page and gallery maps good to go
2f87aad
import logging
import os
import pandas as pd
import streamlit as st
import folium
from streamlit_folium import st_folium
# from transformers import pipeline
# from transformers import AutoModelForImageClassification
# from maps.obs_map import add_obs_map_header
# from datasets import disable_caching
# disable_caching()
# import whale_gallery as gallery
# import whale_viewer as viewer
# from input.input_handling import setup_input, check_inputs_are_set
# from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
# from input.input_handling import dbg_show_observation_hashes
# from maps.alps_map import present_alps_map
# from maps.obs_map import present_obs_map
# from utils.st_logs import parse_log_buffer, init_logging_session_states
# from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
# from hf_push_observations import push_all_observations
# from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
# from classifier.classifier_hotdog import hotdog_classify
# # setup for the ML model on huggingface (our wrapper)
# os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
# classifier_revision = 'main' # default/latest version
# # and the dataset of observations (hf dataset in our space)
# dataset_id = "Saving-Willy/temp_dataset"
# data_files = "data/train-00000-of-00001.parquet"
# USE_BASIC_MAP = False
# DEV_SIDEBAR_LIB = True
# # one toggle for all the extra debug text
# if "MODE_DEV_STATEFUL" not in st.session_state:
# st.session_state.MODE_DEV_STATEFUL = False
# get a global var for logger accessor in this module
# LOG_LEVEL = logging.DEBUG
# g_logger = logging.getLogger(__name__)
# g_logger.setLevel(LOG_LEVEL)
# st.set_page_config(layout="wide")
def main() -> None:
"""
Main entry point to set up the streamlit UI and run the application.
The organisation is as follows:
1. observation input (a new observations) is handled in the sidebar
2. the rest of the interface is organised in tabs:
- cetean classifier
- hotdog classifier
- map to present the obersvations
- table of recent log entries
- gallery of whale images
The majority of the tabs are instantiated from modules. Currently the two
classifiers are still in-line here.
"""
# g_logger.info("App started.")
# g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
#g_logger.debug("debug message")
#g_logger.info("info message")
#g_logger.warning("warning message")
# Streamlit app
# tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
# st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
# # put this early so the progress indicator is at the top (also refreshed at end)
# refresh_progress_display()
# # create a sidebar, and parse all the input (returned as `observations` object)
# with st.sidebar:
# # layout handling
# add_input_UI_elements()
# # input elements (file upload, text input, etc)
# setup_input()
# with tab_map:
# # visual structure: a couple of toggles at the top, then the map inlcuding a
# # dropdown for tileset selection.
# add_obs_map_header()
# tab_map_ui_cols = st.columns(2)
# with tab_map_ui_cols[0]:
# show_db_points = st.toggle("Show Points from DB", True)
# with tab_map_ui_cols[1]:
# dbg_show_extra = st.toggle("Show Extra points (test)", False)
# if show_db_points:
# # show a nicer map, observations marked, tileset selectable.
# st_observation = present_obs_map(
# dataset_id=dataset_id, data_files=data_files,
# dbg_show_extra=dbg_show_extra)
# else:
# # development map.
# st_observation = present_alps_map()
# with tab_log:
# handler = st.session_state['handler']
# if handler is not None:
# records = parse_log_buffer(handler.buffer)
# st.dataframe(records[::-1], use_container_width=True,)
# st.info(f"Length of records: {len(records)}")
# else:
# st.error("⚠️ No log handler found!")
# with tab_coords:
# # the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
# st.markdown("Coming later! :construction:")
# st.markdown(
# """*The goal is to allow interactive definition for the coordinates of a new
# observation, by click/drag points on the map.*""")
# st.write("Click on the map to capture a location.")
# #m = folium.Map(location=visp_loc, zoom_start=7)
# mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
# folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
# ).add_to(mm)
# st_data2 = st_folium(mm, width=725)
# st.write("below the map...")
# if st_data2['last_clicked'] is not None:
# print(st_data2)
# st.info(st_data2['last_clicked'])
# with tab_gallery:
# # here we make a container to allow filtering css properties
# # specific to the gallery (otherwise we get side effects)
# tg_cont = st.container(key="swgallery")
# with tg_cont:
# gallery.render_whale_gallery(n_cols=4)
# state handling re data_entry phases
# 0. no data entered yet -> display the file uploader thing
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
# 2. all data entered -> validate button enabled
# 3. validation button pressed, validation done -> enable the inference button.
# - at this point do we also want to disable changes to the metadata selectors?
# anyway, simple first.
# if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
# # can we advance state? - only when all inputs are set for all uploaded files
# all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
# if all_inputs_set:
# st.session_state.workflow_fsm.complete_current_state()
# # -> data_entry_complete
# else:
# # button, disabled; no state change yet.
# st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
# if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
# # can we advance state? - only when the validate button is pressed
# if st.sidebar.button(":white_check_mark:[**Validate**]"):
# # create a dictionary with the submitted observation
# tab_log.info(f"{st.session_state.observations}")
# df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
# #df = pd.DataFrame(st.session_state.observations, index=[0])
# with tab_coords:
# st.table(df)
# # there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
# # hmm, maybe it should actually just be "I'm done with data entry"
# st.session_state.workflow_fsm.complete_current_state()
# # -> data_entry_validated
# state handling re inference phases (tab_inference)
# 3. validation button pressed, validation done -> enable the inference button.
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
# make sense if we did it as an async action
# 5. ML done -> show results, and manual validation options
# 6. manual validation done -> enable the upload buttons
#
# with tab_inference:
# # inside the inference tab, on button press we call the model (on huggingface hub)
# # which will be run locally.
# # - the model predicts the top 3 most likely species from the input image
# # - these species are shown
# # - the user can override the species prediction using the dropdown
# # - an observation is uploaded if the user chooses.
# if st.session_state.MODE_DEV_STATEFUL:
# dbg_show_observation_hashes()
# add_classifier_header()
# # if we are before data_entry_validated, show the button, disabled.
# if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
# tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
# help="Please validate inputs before proceeding",
# key="button_infer_ceteans")
# if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
# # show the button, enabled. If pressed, we start the ML model (And advance state)
# if tab_inference.button("Identify with cetacean classifier",
# key="button_infer_ceteans"):
# cetacean_classifier = AutoModelForImageClassification.from_pretrained(
# "Saving-Willy/cetacean-classifier",
# revision=classifier_revision,
# trust_remote_code=True)
# cetacean_just_classify(cetacean_classifier)
# st.session_state.workflow_fsm.complete_current_state()
# # trigger a refresh too (refreshhing the prog indicator means the script reruns and
# # we can enter the next state - visualising the results / review)
# # ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
# refresh_progress_display()
# #TODO: validate this doesn't harm performance adversely.
# st.rerun()
# elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
# # show the results, and allow manual validation
# st.markdown("""### Inference results and manual validation/adjustment """)
# if st.session_state.MODE_DEV_STATEFUL:
# s = ""
# for k, v in st.session_state.whale_prediction1.items():
# s += f"* Image {k}: {v}\n"
# st.markdown(s)
# # add a button to advance the state
# if st.button("Confirm species predictions", help="Confirm that all species are selected correctly"):
# st.session_state.workflow_fsm.complete_current_state()
# # -> manual_inspection_completed
# st.rerun()
# cetacean_show_results_and_review()
# elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
# # show the ML results, and allow the user to upload the observation
# st.markdown("""### Inference Results (after manual validation) """)
# if st.button("Upload all observations to THE INTERNET!"):
# # let this go through to the push_all func, since it just reports to log for now.
# push_all_observations(enable_push=False)
# st.session_state.workflow_fsm.complete_current_state()
# # -> data_uploaded
# st.rerun()
# cetacean_show_results()
# elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
# # the data has been sent. Lets show the observations again
# # but no buttons to upload (or greyed out ok)
# st.markdown("""### Observation(s) uploaded - thank you!""")
# cetacean_show_results()
# st.divider()
# #df = pd.DataFrame(st.session_state.observations, index=[0])
# df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
# st.table(df)
# # didn't decide what the next state is here - I think we are in the terminal state.
# #st.session_state.workflow_fsm.complete_current_state()
# # inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
# # purposes, an hotdog image classifier) which will be run locally.
# # - this model predicts if the image is a hotdog or not, and returns probabilities
# # - the input image is the same as for the ceteacean classifier - defined in the sidebar
# tab_hotdogs.title("Hot Dog? Or Not?")
# tab_hotdogs.write("""
# *Run alternative classifer on input images. Here we are using
# a binary classifier - hotdog or not - from
# huggingface.co/julien-c/hotdog-not-hotdog.*""")
# if tab_hotdogs.button("Get Hotdog Prediction"):
# pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# if st.session_state.image is None:
# st.info("Please upload an image first.")
# #st.info(str(observations.to_dict()))
# else:
# hotdog_classify(pipeline_hot_dog, tab_hotdogs)
# # after all other processing, we can show the stage/state
# refresh_progress_display()
if __name__ == "__main__":
main()