Spaces:
Running
Running
Merge pull request #41 from sdsc-ordes/feat/multipage
Browse files- .streamlit/config.toml +6 -0
- README.md +2 -2
- docs/{hotdog.md β classifier_hotdog.md} +0 -0
- docs/dataset_cleaner.md +3 -0
- docs/dataset_download.md +3 -0
- docs/dataset_fake_data.md +3 -0
- docs/{hf_push_observations.md β dataset_hf_push_observations.md} +1 -1
- docs/dataset_requests.md +3 -0
- docs/{main.md β home.md} +1 -1
- docs/pages.md +12 -0
- docs/release_protocol.md +32 -0
- docs/{fix_tabrender.md β utils_fix_tabrender.md} +0 -0
- docs/{grid_maker.md β utils_grid_maker.md} +0 -0
- docs/{metadata_handler.md β utils_metadata_handler.md} +0 -0
- mkdocs.yaml +20 -18
- requirements.txt +8 -0
- src/apptest/demo_input_sidebar.py +2 -0
- src/classifier/classifier_image.py +2 -95
- docs/index.md β src/dataset/__init__.py +0 -0
- src/dataset/cleaner.py +30 -0
- src/dataset/data_requests.py +72 -0
- src/dataset/download.py +87 -0
- src/dataset/fake_data.py +49 -0
- src/{hf_push_observations.py β dataset/hf_push_observations.py} +3 -48
- src/home.py +84 -0
- src/images/design/challenge1.png +3 -0
- src/images/design/challenge2.png +3 -0
- src/images/design/leaderboard.png +3 -0
- src/images/logo/sdsc-horizontal.png +3 -0
- src/input/input_handling.py +94 -41
- src/main.py +0 -319
- src/maps/obs_map.py +4 -68
- src/old_main.py +313 -0
- src/pages/1_π_about.py +46 -0
- src/pages/2_π_map.py +36 -0
- src/pages/3_π€_data requests.py +73 -0
- src/pages/4_π₯_classifiers.py +198 -0
- src/pages/5_π_benchmarking.py +15 -0
- src/pages/6_π_challenges.py +24 -0
- src/pages/7_π_gallery.py +17 -0
- src/pages/8_π§_coordinates.py +28 -0
- src/pages/π_logs.py +17 -0
- src/utils/metadata_handler.py +2 -1
- src/utils/workflow_ui.py +5 -0
- src/whale_viewer.py +3 -1
- tests/{test_obs_map.py β test_dataset_download.py} +12 -18
- tests/test_demo_input_sidebar.py +4 -4
.streamlit/config.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[theme]
|
2 |
+
primaryColor="#2CA3DF"
|
3 |
+
backgroundColor="#0F418C"
|
4 |
+
secondaryBackgroundColor="#0A326D"
|
5 |
+
textColor="#F5F7FA"
|
6 |
+
font="sans serif"
|
README.md
CHANGED
@@ -6,7 +6,7 @@ colorTo: blue
|
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.39.0
|
8 |
python_version: "3.10"
|
9 |
-
app_file: src/
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
12 |
short_description: 'SDSC Hackathon - Project 10. '
|
@@ -28,7 +28,7 @@ pip install -r requirements.txt
|
|
28 |
```
|
29 |
|
30 |
```
|
31 |
-
streamlit run src/
|
32 |
```
|
33 |
|
34 |
|
|
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.39.0
|
8 |
python_version: "3.10"
|
9 |
+
app_file: src/home.py
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
12 |
short_description: 'SDSC Hackathon - Project 10. '
|
|
|
28 |
```
|
29 |
|
30 |
```
|
31 |
+
streamlit run src/home.py
|
32 |
```
|
33 |
|
34 |
|
docs/{hotdog.md β classifier_hotdog.md}
RENAMED
File without changes
|
docs/dataset_cleaner.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
This module provides basic cleaning checks for the dataset that has been downloaded, any row which does not have the expected types is discarded.
|
2 |
+
|
3 |
+
::: src.dataset.cleaner
|
docs/dataset_download.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
This module provides a download function for accessing the hugging face Dataset.
|
2 |
+
|
3 |
+
::: src.dataset.download
|
docs/dataset_fake_data.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
This module takes care of generating some fake data.
|
2 |
+
|
3 |
+
::: src.dataset.fake_data
|
docs/{hf_push_observations.md β dataset_hf_push_observations.md}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
This module writes an observation into a temporary JSON file, in order to add this JSON file to the Saving-Willy Dataset in the Saving-Willy Hugging Face Community.
|
2 |
|
3 |
-
::: src.hf_push_observations
|
|
|
1 |
This module writes an observation into a temporary JSON file, in order to add this JSON file to the Saving-Willy Dataset in the Saving-Willy Hugging Face Community.
|
2 |
|
3 |
+
::: src.dataset.hf_push_observations
|
docs/dataset_requests.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
This module provides functions for filtering the data by localisation and time and for rendering the search possibilities as well as the search results.
|
2 |
+
|
3 |
+
::: src.dataset.requests
|
docs/{main.md β home.md}
RENAMED
@@ -7,4 +7,4 @@ The session state is used to retain values from one interaction to the next, sin
|
|
7 |
See streamlit [docs](https://docs.streamlit.io/develop/api-reference/caching-and-state/st.session_state).
|
8 |
|
9 |
|
10 |
-
::: src.
|
|
|
7 |
See streamlit [docs](https://docs.streamlit.io/develop/api-reference/caching-and-state/st.session_state).
|
8 |
|
9 |
|
10 |
+
::: src.home
|
docs/pages.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The UI is organized into a multipage streamlit app.
|
2 |
+
|
3 |
+
The pages cover the main functionalities of the code.
|
4 |
+
|
5 |
+
Some pages do not yet have code implemented for them: they represent a concept more than a functionality. Such pages are `About`, `Benchmarking`, `Challenges` which are currently only writing, markdown and images and do not require further documentation.
|
6 |
+
|
7 |
+
Pages that have fully implemented code and functionality are the following:
|
8 |
+
|
9 |
+
- Maps
|
10 |
+
- Classifiers
|
11 |
+
- Gallery
|
12 |
+
- Logs
|
docs/release_protocol.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Release Protocol
|
2 |
+
|
3 |
+
We use 2 spaces on hugging face: one for the development of the interface and the main space for showcasing the most recent stable release. The main branch is protected and deploys to the main space when a PR is accepted.
|
4 |
+
|
5 |
+
We wish to enforce strict commits from the dev branch to the main branch when a PR is made to create a new release.
|
6 |
+
|
7 |
+
Dev to Main PR Checklist:
|
8 |
+
|
9 |
+
1. Open a PR from dev branch to main branch
|
10 |
+
2. Commit: in `dataset/download` change the `dataset_id` to point to the main dataset : `Saving-Willy/main_dataset`
|
11 |
+
3. Commit: in the ReadMe, to avoid merge conflict, change the header to this :
|
12 |
+
|
13 |
+
```
|
14 |
+
---
|
15 |
+
title: Saving Willy
|
16 |
+
emoji: π
|
17 |
+
colorFrom: indigo
|
18 |
+
colorTo: blue
|
19 |
+
sdk: streamlit
|
20 |
+
sdk_version: 1.39.0
|
21 |
+
python_version: "3.10"
|
22 |
+
app_file: src/home.py
|
23 |
+
pinned: false
|
24 |
+
license: apache-2.0
|
25 |
+
short_description: 'SDSC Hackathon - Project 10. '
|
26 |
+
---
|
27 |
+
```
|
28 |
+
|
29 |
+
4. Ask for Review
|
30 |
+
5. Merge to main upon approval
|
31 |
+
6. Make a new tag for a major version change (semantic versioning) i.e. `vX.0.0`
|
32 |
+
7. Make a new release of the code, associated to this tag
|
docs/{fix_tabrender.md β utils_fix_tabrender.md}
RENAMED
File without changes
|
docs/{grid_maker.md β utils_grid_maker.md}
RENAMED
File without changes
|
docs/{metadata_handler.md β utils_metadata_handler.md}
RENAMED
File without changes
|
mkdocs.yaml
CHANGED
@@ -22,32 +22,34 @@ plugins:
|
|
22 |
|
23 |
nav:
|
24 |
- README: index.md
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
-
|
29 |
-
- Main
|
|
|
30 |
- Modules:
|
31 |
-
- Data
|
32 |
-
- Data
|
33 |
-
- Data
|
34 |
- Data Object Class: input_observation.md
|
35 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
- Cetacean Fluke & Fin Recognition: classifier_image.md
|
37 |
-
- (temporary) Hotdog Classifier:
|
38 |
-
- Hugging Face Integration:
|
39 |
-
- Push Observations to Dataset: hf_push_observations.md
|
40 |
- Map of observations: obs_map.md
|
41 |
- Whale gallery: whale_gallery.md
|
42 |
- Whale viewer: whale_viewer.md
|
43 |
- Logging: st_logs.md
|
44 |
- Utils:
|
45 |
-
- Tab-rendering fix (js):
|
46 |
-
- Metadata handling:
|
47 |
-
- Grid maker:
|
48 |
|
49 |
- Development clutter:
|
50 |
- Demo app: app.md
|
51 |
-
|
52 |
-
- How to contribute:
|
53 |
-
- Dev Notes: dev_notes.md
|
|
|
22 |
|
23 |
nav:
|
24 |
- README: index.md
|
25 |
+
- Release Protocol: release_protocol.md
|
26 |
+
- How to contribute:
|
27 |
+
- Dev Notes: dev_notes.md
|
28 |
+
- App:
|
29 |
+
- Main App & Home Page: home.md
|
30 |
+
- Multipages Notes: pages.md
|
31 |
- Modules:
|
32 |
+
- Data Entry Handling:
|
33 |
+
- Data Input: input_handling.md
|
34 |
+
- Data Extraction & Validation: input_validator.md
|
35 |
- Data Object Class: input_observation.md
|
36 |
+
- Hugging Face Dataset:
|
37 |
+
- Download: dataset_download.md
|
38 |
+
- Cleaning: dataset_cleaner.md
|
39 |
+
- Push Observations to Dataset: dataset_hf_push_observations.md
|
40 |
+
- Data Requests: dataset_requests.md
|
41 |
+
- Fake data: dataset_fake_data.md
|
42 |
+
- Hugging Face Classifiers:
|
43 |
- Cetacean Fluke & Fin Recognition: classifier_image.md
|
44 |
+
- (temporary) Hotdog Classifier: classifier_hotdog.md
|
|
|
|
|
45 |
- Map of observations: obs_map.md
|
46 |
- Whale gallery: whale_gallery.md
|
47 |
- Whale viewer: whale_viewer.md
|
48 |
- Logging: st_logs.md
|
49 |
- Utils:
|
50 |
+
- Tab-rendering fix (js): utils_fix_tabrender.md
|
51 |
+
- Metadata handling: utils_metadata_handler.md
|
52 |
+
- Grid maker: utils_grid_maker.md
|
53 |
|
54 |
- Development clutter:
|
55 |
- Demo app: app.md
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -13,6 +13,9 @@ datasets==3.0.2
|
|
13 |
## FSM
|
14 |
transitions==0.9.2
|
15 |
|
|
|
|
|
|
|
16 |
# running ML models
|
17 |
|
18 |
## to use ML models hosted on HF
|
@@ -28,8 +31,13 @@ pillow==10.4.0
|
|
28 |
opencv-python-headless==4.5.5.64
|
29 |
albumentations==1.1.0
|
30 |
|
|
|
|
|
|
|
31 |
# documentation: mkdocs
|
32 |
mkdocs~=1.6.0
|
33 |
mkdocstrings[python]>=0.25.1
|
34 |
mkdocs-material~=9.5.27
|
35 |
mkdocs-homepage-copier~=1.0.0
|
|
|
|
|
|
13 |
## FSM
|
14 |
transitions==0.9.2
|
15 |
|
16 |
+
# data manipulation
|
17 |
+
pandas==2.2.3
|
18 |
+
|
19 |
# running ML models
|
20 |
|
21 |
## to use ML models hosted on HF
|
|
|
31 |
opencv-python-headless==4.5.5.64
|
32 |
albumentations==1.1.0
|
33 |
|
34 |
+
# for env variables
|
35 |
+
python-dotenv==1.1.0
|
36 |
+
|
37 |
# documentation: mkdocs
|
38 |
mkdocs~=1.6.0
|
39 |
mkdocstrings[python]>=0.25.1
|
40 |
mkdocs-material~=9.5.27
|
41 |
mkdocs-homepage-copier~=1.0.0
|
42 |
+
|
43 |
+
|
src/apptest/demo_input_sidebar.py
CHANGED
@@ -25,6 +25,8 @@ from apptest.demo_elements import show_uploaded_file_info
|
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
|
|
|
|
|
28 |
init_input_data_session_states()
|
29 |
init_input_container_states()
|
30 |
init_workflow_session_states()
|
|
|
25 |
|
26 |
if __name__ == "__main__":
|
27 |
|
28 |
+
if "input_author_email" not in st.session_state:
|
29 |
+
st.session_state.input_author_email = ""
|
30 |
init_input_data_session_states()
|
31 |
init_input_container_states()
|
32 |
init_workflow_session_states()
|
src/classifier/classifier_image.py
CHANGED
@@ -7,7 +7,6 @@ g_logger = logging.getLogger(__name__)
|
|
7 |
g_logger.setLevel(LOG_LEVEL)
|
8 |
|
9 |
import whale_viewer as viewer
|
10 |
-
from hf_push_observations import push_observations
|
11 |
from utils.grid_maker import gridder
|
12 |
from utils.metadata_handler import metadata2md
|
13 |
from input.input_observation import InputObservation
|
@@ -107,20 +106,15 @@ def cetacean_show_results_and_review() -> None:
|
|
107 |
print(f"[D] {o:3} pred1: {pred1:30} | {hash}")
|
108 |
ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None
|
109 |
selected_class = st.selectbox(f"Species for observation {str(o)}", viewer.WHALE_CLASSES, index=ix)
|
110 |
-
|
111 |
_observation.set_selected_class(selected_class)
|
112 |
-
#observation['predicted_class'] = selected_class
|
113 |
-
# this logic is now in the InputObservation class automatially
|
114 |
-
#if selected_class != st.session_state.whale_prediction1[hash]:
|
115 |
-
# observation['class_overriden'] = selected_class # TODO: this should be boolean!
|
116 |
|
117 |
# store the elements of the observation that will be transmitted (not image)
|
118 |
observation = _observation.to_dict()
|
119 |
st.session_state.public_observations[hash] = observation
|
120 |
|
121 |
-
#st.button(f"Upload observation {str(o)} to THE INTERNET!", on_click=push_observations)
|
122 |
# TODO: the metadata only fills properly if `validate` was clicked.
|
123 |
-
|
|
|
124 |
|
125 |
msg = f"[D] full observation after inference: {observation}"
|
126 |
g_logger.debug(msg)
|
@@ -163,27 +157,6 @@ def cetacean_show_results():
|
|
163 |
|
164 |
with grid[col]:
|
165 |
st.image(image, use_column_width=True)
|
166 |
-
|
167 |
-
# # dropdown for selecting/overriding the species prediction
|
168 |
-
# if not st.session_state.classify_whale_done[hash]:
|
169 |
-
# selected_class = st.sidebar.selectbox("Species", viewer.WHALE_CLASSES,
|
170 |
-
# index=None, placeholder="Species not yet identified...",
|
171 |
-
# disabled=True)
|
172 |
-
# else:
|
173 |
-
# pred1 = st.session_state.whale_prediction1[hash]
|
174 |
-
# # get index of pred1 from WHALE_CLASSES, none if not present
|
175 |
-
# print(f"[D] pred1: {pred1}")
|
176 |
-
# ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None
|
177 |
-
# selected_class = st.selectbox(f"Species for observation {str(o)}", viewer.WHALE_CLASSES, index=ix)
|
178 |
-
|
179 |
-
# observation['predicted_class'] = selected_class
|
180 |
-
# if selected_class != st.session_state.whale_prediction1[hash]:
|
181 |
-
# observation['class_overriden'] = selected_class # TODO: this should be boolean!
|
182 |
-
|
183 |
-
# st.session_state.public_observation = observation
|
184 |
-
|
185 |
-
#st.button(f"Upload observation {str(o)} to THE INTERNET!", on_click=push_observations)
|
186 |
-
#
|
187 |
st.markdown(metadata2md(hash, debug=True))
|
188 |
|
189 |
msg = f"[D] full observation after inference: {observation}"
|
@@ -199,69 +172,3 @@ def cetacean_show_results():
|
|
199 |
viewer.display_whale(whale_classes, i)
|
200 |
o += 1
|
201 |
col = (col + 1) % row_size
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
# func to do all in one
|
207 |
-
def cetacean_classify_show_and_review(cetacean_classifier):
|
208 |
-
"""Cetacean classifier using the saving-willy model from Saving Willy Hugging Face space.
|
209 |
-
For each image in the session state, classify the image and display the top 3 predictions.
|
210 |
-
Args:
|
211 |
-
cetacean_classifier ([type]): saving-willy model from Saving Willy Hugging Face space
|
212 |
-
"""
|
213 |
-
raise DeprecationWarning("This function is deprecated. Use individual steps instead")
|
214 |
-
images = st.session_state.images
|
215 |
-
observations = st.session_state.observations
|
216 |
-
hashes = st.session_state.image_hashes
|
217 |
-
batch_size, row_size, page = gridder(hashes)
|
218 |
-
|
219 |
-
grid = st.columns(row_size)
|
220 |
-
col = 0
|
221 |
-
o=1
|
222 |
-
for hash in hashes:
|
223 |
-
image = images[hash]
|
224 |
-
|
225 |
-
with grid[col]:
|
226 |
-
st.image(image, use_column_width=True)
|
227 |
-
observation = observations[hash].to_dict()
|
228 |
-
# run classifier model on `image`, and persistently store the output
|
229 |
-
out = cetacean_classifier(image) # get top 3 matches
|
230 |
-
st.session_state.whale_prediction1[hash] = out['predictions'][0]
|
231 |
-
st.session_state.classify_whale_done[hash] = True
|
232 |
-
msg = f"[D]2 classify_whale_done for {hash}: {st.session_state.classify_whale_done[hash]}, whale_prediction1: {st.session_state.whale_prediction1[hash]}"
|
233 |
-
g_logger.info(msg)
|
234 |
-
|
235 |
-
# dropdown for selecting/overriding the species prediction
|
236 |
-
if not st.session_state.classify_whale_done[hash]:
|
237 |
-
selected_class = st.sidebar.selectbox("Species", viewer.WHALE_CLASSES,
|
238 |
-
index=None, placeholder="Species not yet identified...",
|
239 |
-
disabled=True)
|
240 |
-
else:
|
241 |
-
pred1 = st.session_state.whale_prediction1[hash]
|
242 |
-
# get index of pred1 from WHALE_CLASSES, none if not present
|
243 |
-
print(f"[D] pred1: {pred1}")
|
244 |
-
ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None
|
245 |
-
selected_class = st.selectbox(f"Species for observation {str(o)}", viewer.WHALE_CLASSES, index=ix)
|
246 |
-
|
247 |
-
observation['predicted_class'] = selected_class
|
248 |
-
if selected_class != st.session_state.whale_prediction1[hash]:
|
249 |
-
observation['class_overriden'] = selected_class
|
250 |
-
|
251 |
-
st.session_state.public_observation = observation
|
252 |
-
st.button(f"Upload observation {str(o)} to THE INTERNET!", on_click=push_observations)
|
253 |
-
# TODO: the metadata only fills properly if `validate` was clicked.
|
254 |
-
st.markdown(metadata2md())
|
255 |
-
|
256 |
-
msg = f"[D] full observation after inference: {observation}"
|
257 |
-
g_logger.debug(msg)
|
258 |
-
print(msg)
|
259 |
-
# TODO: add a link to more info on the model, next to the button.
|
260 |
-
|
261 |
-
whale_classes = out['predictions'][:]
|
262 |
-
# render images for the top 3 (that is what the model api returns)
|
263 |
-
st.markdown(f"Top 3 Predictions for observation {str(o)}")
|
264 |
-
for i in range(len(whale_classes)):
|
265 |
-
viewer.display_whale(whale_classes, i)
|
266 |
-
o += 1
|
267 |
-
col = (col + 1) % row_size
|
|
|
7 |
g_logger.setLevel(LOG_LEVEL)
|
8 |
|
9 |
import whale_viewer as viewer
|
|
|
10 |
from utils.grid_maker import gridder
|
11 |
from utils.metadata_handler import metadata2md
|
12 |
from input.input_observation import InputObservation
|
|
|
106 |
print(f"[D] {o:3} pred1: {pred1:30} | {hash}")
|
107 |
ix = viewer.WHALE_CLASSES.index(pred1) if pred1 in viewer.WHALE_CLASSES else None
|
108 |
selected_class = st.selectbox(f"Species for observation {str(o)}", viewer.WHALE_CLASSES, index=ix)
|
|
|
109 |
_observation.set_selected_class(selected_class)
|
|
|
|
|
|
|
|
|
110 |
|
111 |
# store the elements of the observation that will be transmitted (not image)
|
112 |
observation = _observation.to_dict()
|
113 |
st.session_state.public_observations[hash] = observation
|
114 |
|
|
|
115 |
# TODO: the metadata only fills properly if `validate` was clicked.
|
116 |
+
# TODO put condition on the debug
|
117 |
+
st.markdown(metadata2md(hash, debug=False))
|
118 |
|
119 |
msg = f"[D] full observation after inference: {observation}"
|
120 |
g_logger.debug(msg)
|
|
|
157 |
|
158 |
with grid[col]:
|
159 |
st.image(image, use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
st.markdown(metadata2md(hash, debug=True))
|
161 |
|
162 |
msg = f"[D] full observation after inference: {observation}"
|
|
|
172 |
viewer.display_whale(whale_classes, i)
|
173 |
o += 1
|
174 |
col = (col + 1) % row_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
docs/index.md β src/dataset/__init__.py
RENAMED
File without changes
|
src/dataset/cleaner.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
def clean_lat_long(df) -> pd.DataFrame:
|
4 |
+
"""
|
5 |
+
Clean latitude and longitude columns in the DataFrame.
|
6 |
+
Ensure lat and lon are numeric, coerce errors to NaN
|
7 |
+
Args:
|
8 |
+
df (pd.DataFrame): DataFrame containing latitude and longitude columns.
|
9 |
+
Returns:
|
10 |
+
pd.DataFrame: DataFrame with cleaned latitude and longitude columns.
|
11 |
+
"""
|
12 |
+
df['lat'] = pd.to_numeric(df['lat'], errors='coerce')
|
13 |
+
df['lon'] = pd.to_numeric(df['lon'], errors='coerce')
|
14 |
+
|
15 |
+
# Drop rows with NaN in lat or lon
|
16 |
+
df = df.dropna(subset=['lat', 'lon']).reset_index(drop=True)
|
17 |
+
return df
|
18 |
+
|
19 |
+
def clean_date(df) -> pd.DataFrame: # Ensure lat and lon are numeric, coerce errors to NaN
|
20 |
+
"""
|
21 |
+
Clean date column in the DataFrame.
|
22 |
+
Args:
|
23 |
+
df (pd.DataFrame): DataFrame containing date column.
|
24 |
+
Returns:
|
25 |
+
pd.DataFrame: DataFrame with cleaned date column.
|
26 |
+
"""
|
27 |
+
df['date'] = pd.to_datetime(df['date'], errors='coerce')
|
28 |
+
# Drop rows with NaN in lat or lon
|
29 |
+
df = df.dropna(subset=['date']).reset_index(drop=True)
|
30 |
+
return df
|
src/dataset/data_requests.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from dataset.cleaner import clean_lat_long, clean_date
|
4 |
+
from dataset.download import get_dataset
|
5 |
+
from dataset.fake_data import generate_fake_data
|
6 |
+
|
7 |
+
def data_prep() -> pd.DataFrame:
|
8 |
+
"""
|
9 |
+
Prepares the dataset for use in the application.
|
10 |
+
Downloads the dataset and cleans the data (and generates fake data if needed).
|
11 |
+
Returns:
|
12 |
+
pd.DataFrame: A DataFrame containing the cleaned dataset.
|
13 |
+
"""
|
14 |
+
df = get_dataset()
|
15 |
+
# uncomment to generate some fake data
|
16 |
+
# df = generate_fake_data(df, 100)
|
17 |
+
df = clean_lat_long(df)
|
18 |
+
df = clean_date(df)
|
19 |
+
return df
|
20 |
+
|
21 |
+
def filter_data(df:pd.DataFrame) -> pd.DataFrame:
|
22 |
+
"""
|
23 |
+
Filter the DataFrame based on user-selected ranges for latitude, longitude, and date.
|
24 |
+
Args:
|
25 |
+
df (pd.DataFrame): DataFrame to filter.
|
26 |
+
Returns:
|
27 |
+
pd.DataFrame: Filtered DataFrame.
|
28 |
+
"""
|
29 |
+
df_filtered = df[
|
30 |
+
(df['date'] >= pd.to_datetime(st.session_state.date_range[0])) &
|
31 |
+
(df['date'] <= pd.to_datetime(st.session_state.date_range[1])) &
|
32 |
+
(df['lon'] >= st.session_state.lon_range[0]) &
|
33 |
+
(df['lon'] <= st.session_state.lon_range[1]) &
|
34 |
+
(df['lat'] >= st.session_state.lat_range[0]) &
|
35 |
+
(df['lat'] <= st.session_state.lat_range[1])
|
36 |
+
]
|
37 |
+
return df_filtered
|
38 |
+
|
39 |
+
def show_specie_author(df:pd.DataFrame):
|
40 |
+
"""
|
41 |
+
Display a list of species and their corresponding authors with checkboxes.
|
42 |
+
Args:
|
43 |
+
df (pd.DataFrame): DataFrame containing species and author information.
|
44 |
+
"""
|
45 |
+
df = df.groupby(['species', 'author_email']).size().reset_index(name='counts')
|
46 |
+
for specie in df["species"].unique():
|
47 |
+
st.subheader(f"Species: {specie}")
|
48 |
+
specie_data = df[df['species'] == specie]
|
49 |
+
for _, row in specie_data.iterrows():
|
50 |
+
key = f"{specie}_{row['author_email']}"
|
51 |
+
label = f"{row['author_email']} ({row['counts']})"
|
52 |
+
st.session_state.checkbox_states[key] = st.checkbox(label, key=key)
|
53 |
+
|
54 |
+
def show_new_data_view(df:pd.DataFrame) -> pd.DataFrame:
|
55 |
+
"""
|
56 |
+
Show the new filtered data view on the UI.
|
57 |
+
Filter the dataframe based on the state of the localisation sliders and selected timeframe by the user.
|
58 |
+
Then, show the results of the filtering grouped by species then by authors.
|
59 |
+
Authors are matched to a checkbox component so the user can click it if he/she/they wish to request data from this author.
|
60 |
+
Args:
|
61 |
+
df (pd.DataFrame): DataFrame to filter and display.
|
62 |
+
Returns:
|
63 |
+
pd.DataFrame: Filtered and grouped DataFrame.
|
64 |
+
"""
|
65 |
+
df = filter_data(df)
|
66 |
+
df_ordered = show_specie_author(df)
|
67 |
+
return df_ordered
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
src/dataset/download.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import logging
|
4 |
+
import pandas as pd
|
5 |
+
from datasets import load_dataset
|
6 |
+
from datasets import DatasetDict
|
7 |
+
|
8 |
+
############################################################
|
9 |
+
# the dataset of observations (hf dataset in our space)
|
10 |
+
dataset_id = "Saving-Willy/temp_dataset"
|
11 |
+
data_files = "data/train-00000-of-00001.parquet"
|
12 |
+
############################################################
|
13 |
+
|
14 |
+
m_logger = logging.getLogger(__name__)
|
15 |
+
# we can set the log level locally for funcs in this module
|
16 |
+
#g_m_logger.setLevel(logging.DEBUG)
|
17 |
+
m_logger.setLevel(logging.INFO)
|
18 |
+
|
19 |
+
presentation_data_schema = {
|
20 |
+
'lat': 'float',
|
21 |
+
'lon': 'float',
|
22 |
+
'species': 'str',
|
23 |
+
'author_email': 'str',
|
24 |
+
'date' : 'timestamp',
|
25 |
+
}
|
26 |
+
|
27 |
+
def try_download_dataset(dataset_id:str, data_files:str) -> dict:
|
28 |
+
"""
|
29 |
+
Attempts to download a dataset from Hugging Face, catching any errors that occur.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
dataset_id (str): The ID of the dataset to download.
|
33 |
+
data_files (str): The data files associated with the dataset.
|
34 |
+
Returns:
|
35 |
+
dict: A dictionary containing the dataset metadata if the download is successful,
|
36 |
+
or an empty dictionary if an error occurs.
|
37 |
+
|
38 |
+
"""
|
39 |
+
|
40 |
+
m_logger.info(f"Starting to download dataset {dataset_id} from Hugging Face")
|
41 |
+
t1 = time.time()
|
42 |
+
try:
|
43 |
+
metadata:DatasetDict = load_dataset(dataset_id, data_files=data_files)
|
44 |
+
t2 = time.time(); elap = t2 - t1
|
45 |
+
except ValueError as e:
|
46 |
+
t2 = time.time(); elap = t2 - t1
|
47 |
+
msg = f"Error downloading dataset: {e}. (after {elap:.2f}s)."
|
48 |
+
st.error(msg)
|
49 |
+
m_logger.error(msg)
|
50 |
+
metadata = {}
|
51 |
+
except Exception as e:
|
52 |
+
# catch all (other) exceptions and log them, handle them once isolated
|
53 |
+
t2 = time.time(); elap = t2 - t1
|
54 |
+
msg = f"!!Unknown Error!! downloading dataset: {e}. (after {elap:.2f}s)."
|
55 |
+
st.error(msg)
|
56 |
+
m_logger.error(msg)
|
57 |
+
metadata = {}
|
58 |
+
|
59 |
+
|
60 |
+
msg = f"Downloaded dataset: (after {elap:.2f}s). "
|
61 |
+
m_logger.info(msg)
|
62 |
+
#st.write(msg)
|
63 |
+
return metadata
|
64 |
+
|
65 |
+
def get_dataset() -> pd.DataFrame:
|
66 |
+
"""
|
67 |
+
Downloads the dataset from Hugging Face and prepares it for use.
|
68 |
+
If the dataset is not available, it creates an empty DataFrame with the specified schema.
|
69 |
+
Returns:
|
70 |
+
pd.DataFrame: A DataFrame containing the dataset, or an empty DataFrame if the dataset is not available.
|
71 |
+
"""
|
72 |
+
# load/download data from huggingface dataset
|
73 |
+
metadata = try_download_dataset(dataset_id, data_files)
|
74 |
+
|
75 |
+
if not metadata:
|
76 |
+
# create an empty, but compliant dataframe
|
77 |
+
df = pd.DataFrame(columns=presentation_data_schema).astype(presentation_data_schema)
|
78 |
+
else:
|
79 |
+
# make a pandas df that is compliant with folium/streamlit maps
|
80 |
+
df = pd.DataFrame({
|
81 |
+
'lat': metadata["train"]["latitude"],
|
82 |
+
'lon': metadata["train"]["longitude"],
|
83 |
+
'species': metadata["train"]["selected_class"],
|
84 |
+
'author_email': metadata["train"]["author_email"],
|
85 |
+
'date': metadata["train"]["date"],}
|
86 |
+
)
|
87 |
+
return df
|
src/dataset/fake_data.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
import pandas as pd
|
3 |
+
import random
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
|
6 |
+
from dataset.download import presentation_data_schema
|
7 |
+
from whale_viewer import WHALE_CLASSES
|
8 |
+
|
9 |
+
def generate_fake_data(df:pd.DataFrame, num_fake:int) -> pd.DataFrame:
|
10 |
+
"""
|
11 |
+
Generate fake data for the dataset.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
df (pd.DataFrame): Original DataFrame to append fake data to.
|
15 |
+
num_fake (int): Number of fake observations to generate.
|
16 |
+
Returns:
|
17 |
+
pd.DataFrame: DataFrame with the original and fake data.
|
18 |
+
"""
|
19 |
+
|
20 |
+
# Options for random generation
|
21 |
+
species_options = WHALE_CLASSES
|
22 |
+
email_options = [
|
23 |
+
'[email protected]', '[email protected]',
|
24 | |
25 |
+
]
|
26 |
+
|
27 |
+
def random_ocean_coord() -> Tuple[float, float]:
|
28 |
+
"""Generate random ocean-friendly coordinates."""
|
29 |
+
lat = random.uniform(-60, 60) # avoid poles
|
30 |
+
lon = random.uniform(-180, 180)
|
31 |
+
return lat, lon
|
32 |
+
|
33 |
+
def random_date(start_year:int=2018, end_year:int=2025) -> datetime:
|
34 |
+
"""Generate a random date."""
|
35 |
+
start = datetime(start_year, 1, 1)
|
36 |
+
end = datetime(end_year, 1, 1)
|
37 |
+
return start + timedelta(days=random.randint(0, (end - start).days))
|
38 |
+
|
39 |
+
new_data = []
|
40 |
+
for _ in range(num_fake):
|
41 |
+
lat, lon = random_ocean_coord()
|
42 |
+
species = random.choice(species_options)
|
43 |
+
email = random.choice(email_options)
|
44 |
+
date = random_date()
|
45 |
+
new_data.append([lat, lon, species, email, date])
|
46 |
+
|
47 |
+
new_df = pd.DataFrame(new_data, columns=presentation_data_schema).astype(presentation_data_schema)
|
48 |
+
df = pd.concat([df, new_df], ignore_index=True)
|
49 |
+
return df
|
src/{hf_push_observations.py β dataset/hf_push_observations.py}
RENAMED
@@ -7,6 +7,7 @@ from streamlit.delta_generator import DeltaGenerator
|
|
7 |
import streamlit as st
|
8 |
from huggingface_hub import HfApi, CommitInfo
|
9 |
|
|
|
10 |
|
11 |
# get a global var for logger accessor in this module
|
12 |
LOG_LEVEL = logging.DEBUG
|
@@ -48,7 +49,7 @@ def push_observation(image_hash:str, api:HfApi, enable_push:False) -> CommitInfo
|
|
48 |
rv = api.upload_file(
|
49 |
path_or_fileobj=f.name,
|
50 |
path_in_repo=path_in_repo,
|
51 |
-
repo_id=
|
52 |
repo_type="dataset",
|
53 |
)
|
54 |
print(rv)
|
@@ -73,50 +74,4 @@ def push_all_observations(enable_push:bool=False):
|
|
73 |
|
74 |
# iterate over the list of observations
|
75 |
for hash in st.session_state.public_observations.keys():
|
76 |
-
rv = push_observation(hash, api, enable_push=enable_push)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
def push_observations(tab_log:DeltaGenerator=None):
|
81 |
-
"""
|
82 |
-
Push the observations to the Hugging Face dataset
|
83 |
-
|
84 |
-
Args:
|
85 |
-
tab_log (streamlit.container): The container to log messages to. If not provided,
|
86 |
-
log messages are in any case written to the global logger (TODO: test - didn't
|
87 |
-
push any observation since generating the logger)
|
88 |
-
|
89 |
-
"""
|
90 |
-
raise DeprecationWarning("This function is deprecated. Use push_all_observations instead.")
|
91 |
-
|
92 |
-
# we get the observation from session state: 1 is the dict 2 is the image.
|
93 |
-
# first, lets do an info display (popup)
|
94 |
-
metadata_str = json.dumps(st.session_state.public_observation)
|
95 |
-
|
96 |
-
st.toast(f"Uploading observations: {metadata_str}", icon="π¦")
|
97 |
-
g_logger.info(f"Uploading observations: {metadata_str}")
|
98 |
-
|
99 |
-
# get huggingface api
|
100 |
-
token = os.environ.get("HF_TOKEN", None)
|
101 |
-
api = HfApi(token=token)
|
102 |
-
|
103 |
-
f = tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False)
|
104 |
-
f.write(metadata_str)
|
105 |
-
f.close()
|
106 |
-
st.info(f"temp file: {f.name} with metadata written...")
|
107 |
-
|
108 |
-
path_in_repo= f"metadata/{st.session_state.public_observation['author_email']}/{st.session_state.public_observation['image_md5']}.json"
|
109 |
-
msg = f"fname: {f.name} | path: {path_in_repo}"
|
110 |
-
print(msg)
|
111 |
-
st.warning(msg)
|
112 |
-
# rv = api.upload_file(
|
113 |
-
# path_or_fileobj=f.name,
|
114 |
-
# path_in_repo=path_in_repo,
|
115 |
-
# repo_id="Saving-Willy/temp_dataset",
|
116 |
-
# repo_type="dataset",
|
117 |
-
# )
|
118 |
-
# print(rv)
|
119 |
-
# msg = f"observation attempted tx to repo happy walrus: {rv}"
|
120 |
-
g_logger.info(msg)
|
121 |
-
st.info(msg)
|
122 |
-
|
|
|
7 |
import streamlit as st
|
8 |
from huggingface_hub import HfApi, CommitInfo
|
9 |
|
10 |
+
from dataset.download import dataset_id
|
11 |
|
12 |
# get a global var for logger accessor in this module
|
13 |
LOG_LEVEL = logging.DEBUG
|
|
|
49 |
rv = api.upload_file(
|
50 |
path_or_fileobj=f.name,
|
51 |
path_in_repo=path_in_repo,
|
52 |
+
repo_id=dataset_id,
|
53 |
repo_type="dataset",
|
54 |
)
|
55 |
print(rv)
|
|
|
74 |
|
75 |
# iterate over the list of observations
|
76 |
for hash in st.session_state.public_observations.keys():
|
77 |
+
rv = push_observation(hash, api, enable_push=enable_push)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/home.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
|
4 |
+
import logging
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="Home",
|
8 |
+
page_icon="π³",
|
9 |
+
)
|
10 |
+
|
11 |
+
# get a global var for logger accessor in this module
|
12 |
+
LOG_LEVEL = logging.DEBUG
|
13 |
+
g_logger = logging.getLogger(__name__)
|
14 |
+
g_logger.setLevel(LOG_LEVEL)
|
15 |
+
|
16 |
+
# one toggle for all the extra debug text
|
17 |
+
if "MODE_DEV_STATEFUL" not in st.session_state:
|
18 |
+
st.session_state.MODE_DEV_STATEFUL = False
|
19 |
+
|
20 |
+
from utils.st_logs import init_logging_session_states
|
21 |
+
init_logging_session_states() # logging init should be early
|
22 |
+
|
23 |
+
# set email state var to exist, to permit persistence across page switches
|
24 |
+
if "input_author_email" not in st.session_state:
|
25 |
+
st.session_state.input_author_email = ""
|
26 |
+
|
27 |
+
st.write("""
|
28 |
+
# Welcome ! π¬Λβ§Λ.βπ
|
29 |
+
|
30 |
+
# Cetacean Conservation Community
|
31 |
+
""")
|
32 |
+
|
33 |
+
st.sidebar.success("Explore the pages: there are machine learning models, data requests, maps and more !")
|
34 |
+
st.sidebar.image(
|
35 |
+
"src/images/logo/sdsc-horizontal.png",
|
36 |
+
width=200
|
37 |
+
)
|
38 |
+
|
39 |
+
st.markdown(
|
40 |
+
"""
|
41 |
+
## π Research Data Infrastructure
|
42 |
+
|
43 |
+
ΛΒ°πΌπβππ«§ This interface is a Proof of Concept of a Community-driven Research Data Infrastructure (RDI) for the Cetacean Conservation Community.
|
44 |
+
This PoC will happily be made into a production-ready RDI if the community is interested.
|
45 |
+
|
46 |
+
π€ The intended users of this interface are the researchers and conservationists working on cetacean conservation.
|
47 |
+
In its current state, the interface is designed to be user-friendly, allowing users to upload images of cetaceans and receive species classification results.
|
48 |
+
|
49 |
+
π€ We value community-contributions and encourage anyone interested to reach out on [the main repository's Github issues](https://github.com/sdsc-ordes/saving-willy/issues).
|
50 |
+
|
51 |
+
π The goal of this RDI is to explore community methods for sharing code and data.
|
52 |
+
|
53 |
+
|
54 |
+
## π» Sharing Code
|
55 |
+
|
56 |
+
Through the platform of Hugging Face π€, machine learning models are published so they can be used for inference on this UI or by other users.
|
57 |
+
Currently, a demonstration model is available for cetacean species classification.
|
58 |
+
The model is based on the [HappyWhale](https://www.kaggle.com/competitions/happy-whale-and-dolphin) competition with the most recent weights.
|
59 |
+
Since part of the model was not made public, the classifier should not be used for inference and is purely demonstrative.
|
60 |
+
|
61 |
+
π Ideally, through new Kaggle challenges or ongoing development in research groups, new models can be brought to Hugging Face and onto the UI.
|
62 |
+
|
63 |
+
|
64 |
+
## π Sharing Data
|
65 |
+
|
66 |
+
The dataset is hosted on Hugging Face π€ as well, in order to share the metadata of the images which have been classified by the model.
|
67 |
+
Making the metadata public is under the choice of the researcher, who can choose to use the model for inference without making the image metadata public afterwards.
|
68 |
+
Of course, we encourage open data. Please note that the original images are never made public in the current-state RDI.
|
69 |
+
|
70 |
+
πͺ The RDI also explores how to share data after inference, with a simple data request page where researchers can filter the existing metadata from the Hugging Face dataset, and then easily select those of interest for them.
|
71 |
+
Ideally, the Request button would either start a Discord channel discussion between concerned parties of the data request, or generate an e-mail with interested parties. This design is still under conception.
|
72 |
+
|
73 |
+
"""
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
g_logger.info("App started.")
|
80 |
+
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
|
81 |
+
|
82 |
+
#g_logger.debug("debug message")
|
83 |
+
#g_logger.info("info message")
|
84 |
+
#g_logger.warning("warning message")
|
src/images/design/challenge1.png
ADDED
![]() |
Git LFS Details
|
src/images/design/challenge2.png
ADDED
![]() |
Git LFS Details
|
src/images/design/leaderboard.png
ADDED
![]() |
Git LFS Details
|
src/images/logo/sdsc-horizontal.png
ADDED
![]() |
Git LFS Details
|
src/input/input_handling.py
CHANGED
@@ -5,7 +5,7 @@ import hashlib
|
|
5 |
import os
|
6 |
|
7 |
import streamlit as st
|
8 |
-
from streamlit.delta_generator import DeltaGenerator
|
9 |
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
10 |
|
11 |
import cv2
|
@@ -202,7 +202,13 @@ def metadata_inputs_one_file(file:UploadedFile, image_hash:str, dbg_ix:int=0) ->
|
|
202 |
m_logger.warning("[W] `container_metadata_inputs` is None, using sidebar")
|
203 |
|
204 |
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
author_email = st.session_state["input_author_email"]
|
207 |
filename = file.name
|
208 |
image_datetime_raw = get_image_datetime(file)
|
@@ -211,6 +217,23 @@ def metadata_inputs_one_file(file:UploadedFile, image_hash:str, dbg_ix:int=0) ->
|
|
211 |
msg = f"[D] {filename}: lat, lon from image metadata: {latitude0}, {longitude0}"
|
212 |
m_logger.debug(msg)
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
if spoof_metadata:
|
215 |
if latitude0 is None: # get some default values if not found in exifdata
|
216 |
latitude0:float = spoof_metadata.get('latitude', 0) + dbg_ix
|
@@ -219,20 +242,16 @@ def metadata_inputs_one_file(file:UploadedFile, image_hash:str, dbg_ix:int=0) ->
|
|
219 |
|
220 |
image = st.session_state.images.get(image_hash, None)
|
221 |
# add the UI elements
|
222 |
-
#viewcontainer.title(f"Metadata for {filename}")
|
223 |
viewcontainer = _viewcontainer.expander(f"Metadata for {file.name}", expanded=True)
|
224 |
|
225 |
-
# TODO: use session state so any changes are persisted within session -- currently I think
|
226 |
-
# we are going to take the defaults over and over again -- if the user adjusts coords, or date, it will get lost
|
227 |
-
# - it is a bit complicated, if no values change, they persist (the widget definition: params, name, key, etc)
|
228 |
-
# even if the code is re-run. but if the value changes, it is lost.
|
229 |
-
|
230 |
|
231 |
# 3. Latitude Entry Box
|
232 |
latitude = viewcontainer.text_input(
|
233 |
"Latitude for " + filename,
|
234 |
latitude0,
|
235 |
-
|
|
|
|
|
236 |
if latitude and not is_valid_number(latitude):
|
237 |
viewcontainer.error("Please enter a valid latitude (numerical only).")
|
238 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
@@ -240,40 +259,71 @@ def metadata_inputs_one_file(file:UploadedFile, image_hash:str, dbg_ix:int=0) ->
|
|
240 |
longitude = viewcontainer.text_input(
|
241 |
"Longitude for " + filename,
|
242 |
longitude0,
|
243 |
-
|
|
|
|
|
244 |
if longitude and not is_valid_number(longitude):
|
245 |
viewcontainer.error("Please enter a valid longitude (numerical only).")
|
246 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# 5. Date/time
|
249 |
-
## first from
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
date_value = dt.date()
|
259 |
time_value = dt.time()
|
260 |
-
|
261 |
-
#time_value = datetime.datetime.strptime(image_datetime_raw, '%Y:%m:%d %H:%M:%S').time()
|
262 |
-
#date_value = datetime.datetime.strptime(image_datetime_raw, '%Y:%m:%d %H:%M:%S').date()
|
263 |
else:
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
## either way, give user the option to enter manually (or correct, e.g. if camera has no rtc clock)
|
274 |
-
date = viewcontainer.date_input(
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
tz_str = dt.strftime('%z') # this is numeric, otherwise the info isn't consistent.
|
278 |
|
279 |
observation = InputObservation(image=image, latitude=latitude, longitude=longitude,
|
@@ -339,8 +389,15 @@ def _setup_oneoff_inputs() -> None:
|
|
339 |
|
340 |
with container_file_uploader:
|
341 |
# 1. Input the author email
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
if author_email and not is_valid_email(author_email):
|
345 |
st.error("Please enter a valid email address.")
|
346 |
|
@@ -348,14 +405,10 @@ def _setup_oneoff_inputs() -> None:
|
|
348 |
st.file_uploader(
|
349 |
"Upload one or more images", type=["png", 'jpg', 'jpeg', 'webp'],
|
350 |
accept_multiple_files=True,
|
|
|
351 |
key="file_uploader_data", on_change=buffer_uploaded_files)
|
352 |
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
def setup_input() -> None:
|
360 |
'''
|
361 |
Set up the user input handling (files and metadata)
|
@@ -424,7 +477,7 @@ def add_input_UI_elements() -> None:
|
|
424 |
# which are not created in the same order.
|
425 |
|
426 |
st.divider()
|
427 |
-
st.title("Input
|
428 |
|
429 |
# create and style a container for the file uploader/other one-off inputs
|
430 |
st.markdown('<style>.st-key-container_file_uploader_id { border: 1px solid skyblue; border-radius: 5px; }</style>', unsafe_allow_html=True)
|
|
|
5 |
import os
|
6 |
|
7 |
import streamlit as st
|
8 |
+
#from streamlit.delta_generator import DeltaGenerator
|
9 |
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
10 |
|
11 |
import cv2
|
|
|
202 |
m_logger.warning("[W] `container_metadata_inputs` is None, using sidebar")
|
203 |
|
204 |
|
205 |
+
# logic for the precedence of lat/lon values (descending importance)
|
206 |
+
# 1) if something was already entered, take that value (can have arrived from 2 or 3 in previous round)
|
207 |
+
# 2) if file metadata, take that value
|
208 |
+
# 3) if spoof metadata flag is up, take that value
|
209 |
+
# 4) else, empty (None)
|
210 |
+
# - and similarly for date/time
|
211 |
+
|
212 |
author_email = st.session_state["input_author_email"]
|
213 |
filename = file.name
|
214 |
image_datetime_raw = get_image_datetime(file)
|
|
|
217 |
msg = f"[D] {filename}: lat, lon from image metadata: {latitude0}, {longitude0}"
|
218 |
m_logger.debug(msg)
|
219 |
|
220 |
+
# let's see if there was a value that was already entered for latitude and/or longitude
|
221 |
+
key_lon=f"input_longitude_{image_hash}"
|
222 |
+
key_lat=f"input_latitude_{image_hash}"
|
223 |
+
present_lat = key_lat in st.session_state
|
224 |
+
present_lon = key_lon in st.session_state
|
225 |
+
|
226 |
+
latitude_prior = st.session_state.get(key_lat, None)
|
227 |
+
longitude_prior = st.session_state.get(key_lon, None)
|
228 |
+
|
229 |
+
m_logger.debug(f"[D] {key_lat}: key present? {int(present_lat)} | prior value: {latitude_prior} | metadata value: {latitude0}")
|
230 |
+
m_logger.debug(f"[D] {key_lon}: key present? {int(present_lon)} | prior value: {longitude_prior} | metadata value: {longitude0}")
|
231 |
+
|
232 |
+
if latitude_prior is not None:
|
233 |
+
latitude0 = latitude_prior
|
234 |
+
if longitude_prior is not None:
|
235 |
+
longitude0 = longitude_prior
|
236 |
+
|
237 |
if spoof_metadata:
|
238 |
if latitude0 is None: # get some default values if not found in exifdata
|
239 |
latitude0:float = spoof_metadata.get('latitude', 0) + dbg_ix
|
|
|
242 |
|
243 |
image = st.session_state.images.get(image_hash, None)
|
244 |
# add the UI elements
|
|
|
245 |
viewcontainer = _viewcontainer.expander(f"Metadata for {file.name}", expanded=True)
|
246 |
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# 3. Latitude Entry Box
|
249 |
latitude = viewcontainer.text_input(
|
250 |
"Latitude for " + filename,
|
251 |
latitude0,
|
252 |
+
disabled=st.session_state.get("input_disabled", False),
|
253 |
+
key=f"input_latitude_anchor_{image_hash}",
|
254 |
+
)
|
255 |
if latitude and not is_valid_number(latitude):
|
256 |
viewcontainer.error("Please enter a valid latitude (numerical only).")
|
257 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
|
|
259 |
longitude = viewcontainer.text_input(
|
260 |
"Longitude for " + filename,
|
261 |
longitude0,
|
262 |
+
disabled=st.session_state.get("input_disabled", False),
|
263 |
+
key=f"input_longitude_anchor_{image_hash}",
|
264 |
+
)
|
265 |
if longitude and not is_valid_number(longitude):
|
266 |
viewcontainer.error("Please enter a valid longitude (numerical only).")
|
267 |
m_logger.error(f"Invalid latitude entered: {latitude}.")
|
268 |
+
|
269 |
+
# now store the latitude and longitude into the session state (persists across page switches)
|
270 |
+
st.session_state[key_lat] = latitude
|
271 |
+
st.session_state[key_lon] = longitude
|
272 |
+
|
273 |
|
274 |
# 5. Date/time
|
275 |
+
## first from state, if previously set/modified
|
276 |
+
key_date = f"input_date_{image_hash}"
|
277 |
+
key_time = f"input_time_{image_hash}"
|
278 |
+
present_date = key_date in st.session_state
|
279 |
+
present_time = key_time in st.session_state
|
280 |
+
date_prior:datetime.date = st.session_state.get(key_date, None)
|
281 |
+
time_prior:datetime.time = st.session_state.get(key_time, None)
|
282 |
+
|
283 |
+
m_logger.debug(f"[D] {key_date}: key present? {int(present_date)} | prior value: {date_prior} | metadata value: {image_datetime_raw}")
|
284 |
+
m_logger.debug(f"[D] {key_time}: key present? {int(present_time)} | prior value: {time_prior} | metadata value: {image_datetime_raw}")
|
285 |
+
|
286 |
+
|
287 |
+
if date_prior is not None and time_prior is not None:
|
288 |
+
# we should use these values
|
289 |
+
dt = datetime.datetime.combine(date_prior, time_prior)
|
290 |
date_value = dt.date()
|
291 |
time_value = dt.time()
|
|
|
|
|
|
|
292 |
else:
|
293 |
+
## second from image metadata
|
294 |
+
if image_datetime_raw is not None:
|
295 |
+
# if we have a timezone let's use it (but only if we also have datetime)
|
296 |
+
time_fmt = '%Y:%m:%d %H:%M:%S'
|
297 |
+
if image_timezone_raw is not None:
|
298 |
+
image_datetime_raw += f" {image_timezone_raw}"
|
299 |
+
time_fmt += ' %z'
|
300 |
+
#
|
301 |
+
dt = datetime.datetime.strptime(image_datetime_raw, time_fmt)
|
302 |
+
date_value = dt.date()
|
303 |
+
time_value = dt.time()
|
304 |
+
|
305 |
+
#time_value = datetime.datetime.strptime(image_datetime_raw, '%Y:%m:%d %H:%M:%S').time()
|
306 |
+
#date_value = datetime.datetime.strptime(image_datetime_raw, '%Y:%m:%d %H:%M:%S').date()
|
307 |
+
else:
|
308 |
+
# get current time, with user timezone (or is it server timezone?! TODO: test with different zones)
|
309 |
+
dt = datetime.datetime.now().astimezone().replace(microsecond=0)
|
310 |
+
time_value = dt.time()
|
311 |
+
date_value = dt.date()
|
312 |
|
313 |
## either way, give user the option to enter manually (or correct, e.g. if camera has no rtc clock)
|
314 |
+
date = viewcontainer.date_input(
|
315 |
+
"Date for "+filename, value=date_value,
|
316 |
+
key=f"input_date_anchor_{image_hash}",
|
317 |
+
disabled=st.session_state.get("input_disabled", False), )
|
318 |
+
time = viewcontainer.time_input(
|
319 |
+
"Time for "+filename, time_value,
|
320 |
+
key=f"input_time_anchor_{image_hash}",
|
321 |
+
disabled=st.session_state.get("input_disabled", False),)
|
322 |
+
|
323 |
+
# now store the date and time into the session state (persists across page switches)
|
324 |
+
st.session_state[key_date] = date
|
325 |
+
st.session_state[key_time] = time
|
326 |
+
|
327 |
tz_str = dt.strftime('%z') # this is numeric, otherwise the info isn't consistent.
|
328 |
|
329 |
observation = InputObservation(image=image, latitude=latitude, longitude=longitude,
|
|
|
389 |
|
390 |
with container_file_uploader:
|
391 |
# 1. Input the author email
|
392 |
+
text0 = st.session_state.get("input_author_email", "None")
|
393 |
+
#print(f"[D] author email: {text0}")
|
394 |
+
author_email = st.text_input("Author Email",
|
395 |
+
value=st.session_state.get("input_author_email", None),
|
396 |
+
disabled=st.session_state.get("input_disabled", False),
|
397 |
+
)
|
398 |
+
# store the email in session state
|
399 |
+
st.session_state["input_author_email"] = author_email
|
400 |
+
|
401 |
if author_email and not is_valid_email(author_email):
|
402 |
st.error("Please enter a valid email address.")
|
403 |
|
|
|
405 |
st.file_uploader(
|
406 |
"Upload one or more images", type=["png", 'jpg', 'jpeg', 'webp'],
|
407 |
accept_multiple_files=True,
|
408 |
+
disabled=st.session_state.get("input_disabled", False),
|
409 |
key="file_uploader_data", on_change=buffer_uploaded_files)
|
410 |
|
411 |
|
|
|
|
|
|
|
|
|
|
|
412 |
def setup_input() -> None:
|
413 |
'''
|
414 |
Set up the user input handling (files and metadata)
|
|
|
477 |
# which are not created in the same order.
|
478 |
|
479 |
st.divider()
|
480 |
+
st.title("Input your images")
|
481 |
|
482 |
# create and style a container for the file uploader/other one-off inputs
|
483 |
st.markdown('<style>.st-key-container_file_uploader_id { border: 1px solid skyblue; border-radius: 5px; }</style>', unsafe_allow_html=True)
|
src/main.py
DELETED
@@ -1,319 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import os
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
import streamlit as st
|
6 |
-
import folium
|
7 |
-
from streamlit_folium import st_folium
|
8 |
-
|
9 |
-
from transformers import pipeline
|
10 |
-
from transformers import AutoModelForImageClassification
|
11 |
-
|
12 |
-
from maps.obs_map import add_obs_map_header
|
13 |
-
from classifier.classifier_image import add_classifier_header
|
14 |
-
from datasets import disable_caching
|
15 |
-
disable_caching()
|
16 |
-
|
17 |
-
import whale_gallery as gallery
|
18 |
-
import whale_viewer as viewer
|
19 |
-
from input.input_handling import setup_input, check_inputs_are_set
|
20 |
-
from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
|
21 |
-
from input.input_handling import dbg_show_observation_hashes
|
22 |
-
|
23 |
-
from maps.alps_map import present_alps_map
|
24 |
-
from maps.obs_map import present_obs_map
|
25 |
-
from utils.st_logs import parse_log_buffer, init_logging_session_states
|
26 |
-
from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
|
27 |
-
from hf_push_observations import push_all_observations
|
28 |
-
|
29 |
-
from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
|
30 |
-
from classifier.classifier_hotdog import hotdog_classify
|
31 |
-
|
32 |
-
|
33 |
-
# setup for the ML model on huggingface (our wrapper)
|
34 |
-
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
35 |
-
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
|
36 |
-
classifier_revision = 'main' # default/latest version
|
37 |
-
# and the dataset of observations (hf dataset in our space)
|
38 |
-
dataset_id = "Saving-Willy/temp_dataset"
|
39 |
-
data_files = "data/train-00000-of-00001.parquet"
|
40 |
-
|
41 |
-
USE_BASIC_MAP = False
|
42 |
-
DEV_SIDEBAR_LIB = True
|
43 |
-
|
44 |
-
# one toggle for all the extra debug text
|
45 |
-
if "MODE_DEV_STATEFUL" not in st.session_state:
|
46 |
-
st.session_state.MODE_DEV_STATEFUL = False
|
47 |
-
|
48 |
-
|
49 |
-
# get a global var for logger accessor in this module
|
50 |
-
LOG_LEVEL = logging.DEBUG
|
51 |
-
g_logger = logging.getLogger(__name__)
|
52 |
-
g_logger.setLevel(LOG_LEVEL)
|
53 |
-
|
54 |
-
st.set_page_config(layout="wide")
|
55 |
-
|
56 |
-
# initialise various session state variables
|
57 |
-
init_logging_session_states() # logging init should be early
|
58 |
-
init_workflow_session_states()
|
59 |
-
init_input_data_session_states()
|
60 |
-
init_input_container_states()
|
61 |
-
init_workflow_viz()
|
62 |
-
init_classifier_session_states()
|
63 |
-
|
64 |
-
|
65 |
-
def main() -> None:
|
66 |
-
"""
|
67 |
-
Main entry point to set up the streamlit UI and run the application.
|
68 |
-
|
69 |
-
The organisation is as follows:
|
70 |
-
|
71 |
-
1. observation input (a new observations) is handled in the sidebar
|
72 |
-
2. the rest of the interface is organised in tabs:
|
73 |
-
|
74 |
-
- cetean classifier
|
75 |
-
- hotdog classifier
|
76 |
-
- map to present the obersvations
|
77 |
-
- table of recent log entries
|
78 |
-
- gallery of whale images
|
79 |
-
|
80 |
-
The majority of the tabs are instantiated from modules. Currently the two
|
81 |
-
classifiers are still in-line here.
|
82 |
-
|
83 |
-
"""
|
84 |
-
|
85 |
-
g_logger.info("App started.")
|
86 |
-
g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
|
87 |
-
|
88 |
-
#g_logger.debug("debug message")
|
89 |
-
#g_logger.info("info message")
|
90 |
-
#g_logger.warning("warning message")
|
91 |
-
|
92 |
-
# Streamlit app
|
93 |
-
tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
|
94 |
-
st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
|
95 |
-
|
96 |
-
# put this early so the progress indicator is at the top (also refreshed at end)
|
97 |
-
refresh_progress_display()
|
98 |
-
|
99 |
-
# create a sidebar, and parse all the input (returned as `observations` object)
|
100 |
-
with st.sidebar:
|
101 |
-
# layout handling
|
102 |
-
add_input_UI_elements()
|
103 |
-
# input elements (file upload, text input, etc)
|
104 |
-
setup_input()
|
105 |
-
|
106 |
-
|
107 |
-
with tab_map:
|
108 |
-
# visual structure: a couple of toggles at the top, then the map inlcuding a
|
109 |
-
# dropdown for tileset selection.
|
110 |
-
add_obs_map_header()
|
111 |
-
tab_map_ui_cols = st.columns(2)
|
112 |
-
with tab_map_ui_cols[0]:
|
113 |
-
show_db_points = st.toggle("Show Points from DB", True)
|
114 |
-
with tab_map_ui_cols[1]:
|
115 |
-
dbg_show_extra = st.toggle("Show Extra points (test)", False)
|
116 |
-
|
117 |
-
if show_db_points:
|
118 |
-
# show a nicer map, observations marked, tileset selectable.
|
119 |
-
st_observation = present_obs_map(
|
120 |
-
dataset_id=dataset_id, data_files=data_files,
|
121 |
-
dbg_show_extra=dbg_show_extra)
|
122 |
-
|
123 |
-
else:
|
124 |
-
# development map.
|
125 |
-
st_observation = present_alps_map()
|
126 |
-
|
127 |
-
|
128 |
-
with tab_log:
|
129 |
-
handler = st.session_state['handler']
|
130 |
-
if handler is not None:
|
131 |
-
records = parse_log_buffer(handler.buffer)
|
132 |
-
st.dataframe(records[::-1], use_container_width=True,)
|
133 |
-
st.info(f"Length of records: {len(records)}")
|
134 |
-
else:
|
135 |
-
st.error("β οΈ No log handler found!")
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
with tab_coords:
|
140 |
-
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
|
141 |
-
st.markdown("Coming later! :construction:")
|
142 |
-
st.markdown(
|
143 |
-
"""*The goal is to allow interactive definition for the coordinates of a new
|
144 |
-
observation, by click/drag points on the map.*""")
|
145 |
-
|
146 |
-
|
147 |
-
st.write("Click on the map to capture a location.")
|
148 |
-
#m = folium.Map(location=visp_loc, zoom_start=7)
|
149 |
-
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
|
150 |
-
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
|
151 |
-
).add_to(mm)
|
152 |
-
|
153 |
-
st_data2 = st_folium(mm, width=725)
|
154 |
-
st.write("below the map...")
|
155 |
-
if st_data2['last_clicked'] is not None:
|
156 |
-
print(st_data2)
|
157 |
-
st.info(st_data2['last_clicked'])
|
158 |
-
|
159 |
-
|
160 |
-
with tab_gallery:
|
161 |
-
# here we make a container to allow filtering css properties
|
162 |
-
# specific to the gallery (otherwise we get side effects)
|
163 |
-
tg_cont = st.container(key="swgallery")
|
164 |
-
with tg_cont:
|
165 |
-
gallery.render_whale_gallery(n_cols=4)
|
166 |
-
|
167 |
-
|
168 |
-
# state handling re data_entry phases
|
169 |
-
# 0. no data entered yet -> display the file uploader thing
|
170 |
-
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
|
171 |
-
# 2. all data entered -> validate button enabled
|
172 |
-
# 3. validation button pressed, validation done -> enable the inference button.
|
173 |
-
# - at this point do we also want to disable changes to the metadata selectors?
|
174 |
-
# anyway, simple first.
|
175 |
-
|
176 |
-
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
|
177 |
-
# can we advance state? - only when all inputs are set for all uploaded files
|
178 |
-
all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
|
179 |
-
if all_inputs_set:
|
180 |
-
st.session_state.workflow_fsm.complete_current_state()
|
181 |
-
# -> data_entry_complete
|
182 |
-
else:
|
183 |
-
# button, disabled; no state change yet.
|
184 |
-
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
|
185 |
-
|
186 |
-
|
187 |
-
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
|
188 |
-
# can we advance state? - only when the validate button is pressed
|
189 |
-
if st.sidebar.button(":white_check_mark:[**Validate**]"):
|
190 |
-
# create a dictionary with the submitted observation
|
191 |
-
tab_log.info(f"{st.session_state.observations}")
|
192 |
-
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
|
193 |
-
#df = pd.DataFrame(st.session_state.observations, index=[0])
|
194 |
-
with tab_coords:
|
195 |
-
st.table(df)
|
196 |
-
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
|
197 |
-
# hmm, maybe it should actually just be "I'm done with data entry"
|
198 |
-
st.session_state.workflow_fsm.complete_current_state()
|
199 |
-
# -> data_entry_validated
|
200 |
-
|
201 |
-
# state handling re inference phases (tab_inference)
|
202 |
-
# 3. validation button pressed, validation done -> enable the inference button.
|
203 |
-
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
|
204 |
-
# make sense if we did it as an async action
|
205 |
-
# 5. ML done -> show results, and manual validation options
|
206 |
-
# 6. manual validation done -> enable the upload buttons
|
207 |
-
#
|
208 |
-
with tab_inference:
|
209 |
-
# inside the inference tab, on button press we call the model (on huggingface hub)
|
210 |
-
# which will be run locally.
|
211 |
-
# - the model predicts the top 3 most likely species from the input image
|
212 |
-
# - these species are shown
|
213 |
-
# - the user can override the species prediction using the dropdown
|
214 |
-
# - an observation is uploaded if the user chooses.
|
215 |
-
|
216 |
-
|
217 |
-
if st.session_state.MODE_DEV_STATEFUL:
|
218 |
-
dbg_show_observation_hashes()
|
219 |
-
|
220 |
-
add_classifier_header()
|
221 |
-
# if we are before data_entry_validated, show the button, disabled.
|
222 |
-
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
|
223 |
-
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
|
224 |
-
help="Please validate inputs before proceeding",
|
225 |
-
key="button_infer_ceteans")
|
226 |
-
|
227 |
-
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
|
228 |
-
# show the button, enabled. If pressed, we start the ML model (And advance state)
|
229 |
-
if tab_inference.button("Identify with cetacean classifier",
|
230 |
-
key="button_infer_ceteans"):
|
231 |
-
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
|
232 |
-
"Saving-Willy/cetacean-classifier",
|
233 |
-
revision=classifier_revision,
|
234 |
-
trust_remote_code=True)
|
235 |
-
|
236 |
-
cetacean_just_classify(cetacean_classifier)
|
237 |
-
st.session_state.workflow_fsm.complete_current_state()
|
238 |
-
# trigger a refresh too (refreshhing the prog indicator means the script reruns and
|
239 |
-
# we can enter the next state - visualising the results / review)
|
240 |
-
# ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
|
241 |
-
refresh_progress_display()
|
242 |
-
#TODO: validate this doesn't harm performance adversely.
|
243 |
-
st.rerun()
|
244 |
-
|
245 |
-
elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
|
246 |
-
# show the results, and allow manual validation
|
247 |
-
st.markdown("""### Inference results and manual validation/adjustment """)
|
248 |
-
if st.session_state.MODE_DEV_STATEFUL:
|
249 |
-
s = ""
|
250 |
-
for k, v in st.session_state.whale_prediction1.items():
|
251 |
-
s += f"* Image {k}: {v}\n"
|
252 |
-
|
253 |
-
st.markdown(s)
|
254 |
-
|
255 |
-
# add a button to advance the state
|
256 |
-
if st.button("Confirm species predictions", help="Confirm that all species are selected correctly"):
|
257 |
-
st.session_state.workflow_fsm.complete_current_state()
|
258 |
-
# -> manual_inspection_completed
|
259 |
-
st.rerun()
|
260 |
-
|
261 |
-
cetacean_show_results_and_review()
|
262 |
-
|
263 |
-
elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
|
264 |
-
# show the ML results, and allow the user to upload the observation
|
265 |
-
st.markdown("""### Inference Results (after manual validation) """)
|
266 |
-
|
267 |
-
|
268 |
-
if st.button("Upload all observations to THE INTERNET!"):
|
269 |
-
# let this go through to the push_all func, since it just reports to log for now.
|
270 |
-
push_all_observations(enable_push=False)
|
271 |
-
st.session_state.workflow_fsm.complete_current_state()
|
272 |
-
# -> data_uploaded
|
273 |
-
st.rerun()
|
274 |
-
|
275 |
-
cetacean_show_results()
|
276 |
-
|
277 |
-
elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
|
278 |
-
# the data has been sent. Lets show the observations again
|
279 |
-
# but no buttons to upload (or greyed out ok)
|
280 |
-
st.markdown("""### Observation(s) uploaded - thank you!""")
|
281 |
-
cetacean_show_results()
|
282 |
-
|
283 |
-
st.divider()
|
284 |
-
#df = pd.DataFrame(st.session_state.observations, index=[0])
|
285 |
-
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
|
286 |
-
st.table(df)
|
287 |
-
|
288 |
-
# didn't decide what the next state is here - I think we are in the terminal state.
|
289 |
-
#st.session_state.workflow_fsm.complete_current_state()
|
290 |
-
|
291 |
-
|
292 |
-
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
|
293 |
-
# purposes, an hotdog image classifier) which will be run locally.
|
294 |
-
# - this model predicts if the image is a hotdog or not, and returns probabilities
|
295 |
-
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
|
296 |
-
tab_hotdogs.title("Hot Dog? Or Not?")
|
297 |
-
tab_hotdogs.write("""
|
298 |
-
*Run alternative classifer on input images. Here we are using
|
299 |
-
a binary classifier - hotdog or not - from
|
300 |
-
huggingface.co/julien-c/hotdog-not-hotdog.*""")
|
301 |
-
|
302 |
-
if tab_hotdogs.button("Get Hotdog Prediction"):
|
303 |
-
|
304 |
-
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
305 |
-
|
306 |
-
if st.session_state.image is None:
|
307 |
-
st.info("Please upload an image first.")
|
308 |
-
#st.info(str(observations.to_dict()))
|
309 |
-
|
310 |
-
else:
|
311 |
-
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
|
312 |
-
|
313 |
-
|
314 |
-
# after all other processing, we can show the stage/state
|
315 |
-
refresh_progress_display()
|
316 |
-
|
317 |
-
|
318 |
-
if __name__ == "__main__":
|
319 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/maps/obs_map.py
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
from typing import Tuple
|
2 |
import logging
|
3 |
|
4 |
-
import pandas as pd
|
5 |
-
from datasets import load_dataset
|
6 |
-
from datasets import DatasetDict, Dataset
|
7 |
-
|
8 |
-
import time
|
9 |
-
|
10 |
import streamlit as st
|
11 |
import folium
|
12 |
from streamlit_folium import st_folium
|
13 |
|
14 |
import whale_viewer as viewer
|
15 |
from utils.fix_tabrender import js_show_zeroheight_iframe
|
|
|
16 |
|
17 |
m_logger = logging.getLogger(__name__)
|
18 |
# we can set the log level locally for funcs in this module
|
@@ -66,13 +61,6 @@ _colors = [
|
|
66 |
|
67 |
whale2color = {k: v for k, v in zip(viewer.WHALE_CLASSES, _colors)}
|
68 |
|
69 |
-
presentation_data_schema = {
|
70 |
-
'lat': 'float',
|
71 |
-
'lon': 'float',
|
72 |
-
'species': 'str',
|
73 |
-
}
|
74 |
-
|
75 |
-
|
76 |
def create_map(tile_name:str, location:Tuple[float], zoom_start: int = 7) -> folium.Map:
|
77 |
"""
|
78 |
Create a folium map with the specified tile layer
|
@@ -124,48 +112,8 @@ def create_map(tile_name:str, location:Tuple[float], zoom_start: int = 7) -> fol
|
|
124 |
#folium.LayerControl().add_to(m)
|
125 |
return m
|
126 |
|
127 |
-
def try_download_dataset(dataset_id:str, data_files:str) -> dict:
|
128 |
-
"""
|
129 |
-
Attempts to download a dataset from Hugging Face, catching any errors that occur.
|
130 |
-
|
131 |
-
Args:
|
132 |
-
dataset_id (str): The ID of the dataset to download.
|
133 |
-
data_files (str): The data files associated with the dataset.
|
134 |
-
Returns:
|
135 |
-
dict: A dictionary containing the dataset metadata if the download is successful,
|
136 |
-
or an empty dictionary if an error occurs.
|
137 |
-
|
138 |
-
"""
|
139 |
-
|
140 |
-
m_logger.info(f"Starting to download dataset {dataset_id} from Hugging Face")
|
141 |
-
t1 = time.time()
|
142 |
-
try:
|
143 |
-
metadata:DatasetDict = load_dataset(dataset_id, data_files=data_files)
|
144 |
-
t2 = time.time(); elap = t2 - t1
|
145 |
-
except ValueError as e:
|
146 |
-
t2 = time.time(); elap = t2 - t1
|
147 |
-
msg = f"Error downloading dataset: {e}. (after {elap:.2f}s)."
|
148 |
-
st.error(msg)
|
149 |
-
m_logger.error(msg)
|
150 |
-
metadata = {}
|
151 |
-
except Exception as e:
|
152 |
-
# catch all (other) exceptions and log them, handle them once isolated
|
153 |
-
t2 = time.time(); elap = t2 - t1
|
154 |
-
msg = f"!!Unknown Error!! downloading dataset: {e}. (after {elap:.2f}s)."
|
155 |
-
st.error(msg)
|
156 |
-
m_logger.error(msg)
|
157 |
-
metadata = {}
|
158 |
-
|
159 |
-
|
160 |
-
msg = f"Downloaded dataset: (after {elap:.2f}s). "
|
161 |
-
m_logger.info(msg)
|
162 |
-
st.write(msg)
|
163 |
-
return metadata
|
164 |
-
|
165 |
|
166 |
-
def present_obs_map(
|
167 |
-
data_files:str = "data/train-00000-of-00001.parquet",
|
168 |
-
dbg_show_extra:bool = False) -> dict:
|
169 |
"""
|
170 |
Render map plus tile selector, with markers for whale observations
|
171 |
|
@@ -186,20 +134,8 @@ def present_obs_map(dataset_id:str = "Saving-Willy/Happywhale-kaggle",
|
|
186 |
|
187 |
"""
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
if not metadata:
|
193 |
-
# create an empty, but compliant dataframe
|
194 |
-
_df = pd.DataFrame(columns=presentation_data_schema).astype(presentation_data_schema)
|
195 |
-
else:
|
196 |
-
# make a pandas df that is compliant with folium/streamlit maps
|
197 |
-
_df = pd.DataFrame({
|
198 |
-
'lat': metadata["train"]["latitude"],
|
199 |
-
'lon': metadata["train"]["longitude"],
|
200 |
-
'species': metadata["train"]["predicted_class"],}
|
201 |
-
)
|
202 |
-
|
203 |
if dbg_show_extra:
|
204 |
# add a few samples to visualise colours
|
205 |
_df.loc[len(_df)] = {'lat': 0, 'lon': 0, 'species': 'rough_toothed_dolphin'}
|
|
|
1 |
from typing import Tuple
|
2 |
import logging
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
5 |
import folium
|
6 |
from streamlit_folium import st_folium
|
7 |
|
8 |
import whale_viewer as viewer
|
9 |
from utils.fix_tabrender import js_show_zeroheight_iframe
|
10 |
+
from dataset.download import get_dataset
|
11 |
|
12 |
m_logger = logging.getLogger(__name__)
|
13 |
# we can set the log level locally for funcs in this module
|
|
|
61 |
|
62 |
whale2color = {k: v for k, v in zip(viewer.WHALE_CLASSES, _colors)}
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def create_map(tile_name:str, location:Tuple[float], zoom_start: int = 7) -> folium.Map:
|
65 |
"""
|
66 |
Create a folium map with the specified tile layer
|
|
|
112 |
#folium.LayerControl().add_to(m)
|
113 |
return m
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
def present_obs_map(dbg_show_extra:bool = False) -> dict:
|
|
|
|
|
117 |
"""
|
118 |
Render map plus tile selector, with markers for whale observations
|
119 |
|
|
|
134 |
|
135 |
"""
|
136 |
|
137 |
+
_df = get_dataset()
|
138 |
+
print(_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
if dbg_show_extra:
|
140 |
# add a few samples to visualise colours
|
141 |
_df.loc[len(_df)] = {'lat': 0, 'lon': 0, 'species': 'rough_toothed_dolphin'}
|
src/old_main.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import streamlit as st
|
6 |
+
import folium
|
7 |
+
from streamlit_folium import st_folium
|
8 |
+
|
9 |
+
# from transformers import pipeline
|
10 |
+
# from transformers import AutoModelForImageClassification
|
11 |
+
|
12 |
+
# from maps.obs_map import add_obs_map_header
|
13 |
+
|
14 |
+
# from datasets import disable_caching
|
15 |
+
# disable_caching()
|
16 |
+
|
17 |
+
# import whale_gallery as gallery
|
18 |
+
# import whale_viewer as viewer
|
19 |
+
# from input.input_handling import setup_input, check_inputs_are_set
|
20 |
+
# from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
|
21 |
+
# from input.input_handling import dbg_show_observation_hashes
|
22 |
+
|
23 |
+
# from maps.alps_map import present_alps_map
|
24 |
+
# from maps.obs_map import present_obs_map
|
25 |
+
# from utils.st_logs import parse_log_buffer, init_logging_session_states
|
26 |
+
# from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
|
27 |
+
# from hf_push_observations import push_all_observations
|
28 |
+
|
29 |
+
# from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
|
30 |
+
# from classifier.classifier_hotdog import hotdog_classify
|
31 |
+
|
32 |
+
|
33 |
+
# # setup for the ML model on huggingface (our wrapper)
|
34 |
+
# os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
35 |
+
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
|
36 |
+
# classifier_revision = 'main' # default/latest version
|
37 |
+
# # and the dataset of observations (hf dataset in our space)
|
38 |
+
# dataset_id = "Saving-Willy/temp_dataset"
|
39 |
+
# data_files = "data/train-00000-of-00001.parquet"
|
40 |
+
|
41 |
+
# USE_BASIC_MAP = False
|
42 |
+
# DEV_SIDEBAR_LIB = True
|
43 |
+
|
44 |
+
# # one toggle for all the extra debug text
|
45 |
+
# if "MODE_DEV_STATEFUL" not in st.session_state:
|
46 |
+
# st.session_state.MODE_DEV_STATEFUL = False
|
47 |
+
|
48 |
+
|
49 |
+
# get a global var for logger accessor in this module
|
50 |
+
# LOG_LEVEL = logging.DEBUG
|
51 |
+
# g_logger = logging.getLogger(__name__)
|
52 |
+
# g_logger.setLevel(LOG_LEVEL)
|
53 |
+
|
54 |
+
# st.set_page_config(layout="wide")
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def main() -> None:
|
60 |
+
"""
|
61 |
+
Main entry point to set up the streamlit UI and run the application.
|
62 |
+
|
63 |
+
The organisation is as follows:
|
64 |
+
|
65 |
+
1. observation input (a new observations) is handled in the sidebar
|
66 |
+
2. the rest of the interface is organised in tabs:
|
67 |
+
|
68 |
+
- cetean classifier
|
69 |
+
- hotdog classifier
|
70 |
+
- map to present the obersvations
|
71 |
+
- table of recent log entries
|
72 |
+
- gallery of whale images
|
73 |
+
|
74 |
+
The majority of the tabs are instantiated from modules. Currently the two
|
75 |
+
classifiers are still in-line here.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
# g_logger.info("App started.")
|
80 |
+
# g_logger.warning(f"[D] Streamlit version: {st.__version__}. Python version: {os.sys.version}")
|
81 |
+
|
82 |
+
#g_logger.debug("debug message")
|
83 |
+
#g_logger.info("info message")
|
84 |
+
#g_logger.warning("warning message")
|
85 |
+
|
86 |
+
# Streamlit app
|
87 |
+
# tab_inference, tab_hotdogs, tab_map, tab_coords, tab_log, tab_gallery = \
|
88 |
+
# st.tabs(["Cetecean classifier", "Hotdog classifier", "Map", "*:gray[Dev:coordinates]*", "Log", "Beautiful cetaceans"])
|
89 |
+
|
90 |
+
# # put this early so the progress indicator is at the top (also refreshed at end)
|
91 |
+
# refresh_progress_display()
|
92 |
+
|
93 |
+
# # create a sidebar, and parse all the input (returned as `observations` object)
|
94 |
+
# with st.sidebar:
|
95 |
+
# # layout handling
|
96 |
+
# add_input_UI_elements()
|
97 |
+
# # input elements (file upload, text input, etc)
|
98 |
+
# setup_input()
|
99 |
+
|
100 |
+
|
101 |
+
# with tab_map:
|
102 |
+
# # visual structure: a couple of toggles at the top, then the map inlcuding a
|
103 |
+
# # dropdown for tileset selection.
|
104 |
+
# add_obs_map_header()
|
105 |
+
# tab_map_ui_cols = st.columns(2)
|
106 |
+
# with tab_map_ui_cols[0]:
|
107 |
+
# show_db_points = st.toggle("Show Points from DB", True)
|
108 |
+
# with tab_map_ui_cols[1]:
|
109 |
+
# dbg_show_extra = st.toggle("Show Extra points (test)", False)
|
110 |
+
|
111 |
+
# if show_db_points:
|
112 |
+
# # show a nicer map, observations marked, tileset selectable.
|
113 |
+
# st_observation = present_obs_map(
|
114 |
+
# dataset_id=dataset_id, data_files=data_files,
|
115 |
+
# dbg_show_extra=dbg_show_extra)
|
116 |
+
|
117 |
+
# else:
|
118 |
+
# # development map.
|
119 |
+
# st_observation = present_alps_map()
|
120 |
+
|
121 |
+
|
122 |
+
# with tab_log:
|
123 |
+
# handler = st.session_state['handler']
|
124 |
+
# if handler is not None:
|
125 |
+
# records = parse_log_buffer(handler.buffer)
|
126 |
+
# st.dataframe(records[::-1], use_container_width=True,)
|
127 |
+
# st.info(f"Length of records: {len(records)}")
|
128 |
+
# else:
|
129 |
+
# st.error("β οΈ No log handler found!")
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
# with tab_coords:
|
134 |
+
# # the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
|
135 |
+
# st.markdown("Coming later! :construction:")
|
136 |
+
# st.markdown(
|
137 |
+
# """*The goal is to allow interactive definition for the coordinates of a new
|
138 |
+
# observation, by click/drag points on the map.*""")
|
139 |
+
|
140 |
+
|
141 |
+
# st.write("Click on the map to capture a location.")
|
142 |
+
# #m = folium.Map(location=visp_loc, zoom_start=7)
|
143 |
+
# mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
|
144 |
+
# folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
|
145 |
+
# ).add_to(mm)
|
146 |
+
|
147 |
+
# st_data2 = st_folium(mm, width=725)
|
148 |
+
# st.write("below the map...")
|
149 |
+
# if st_data2['last_clicked'] is not None:
|
150 |
+
# print(st_data2)
|
151 |
+
# st.info(st_data2['last_clicked'])
|
152 |
+
|
153 |
+
|
154 |
+
# with tab_gallery:
|
155 |
+
# # here we make a container to allow filtering css properties
|
156 |
+
# # specific to the gallery (otherwise we get side effects)
|
157 |
+
# tg_cont = st.container(key="swgallery")
|
158 |
+
# with tg_cont:
|
159 |
+
# gallery.render_whale_gallery(n_cols=4)
|
160 |
+
|
161 |
+
|
162 |
+
# state handling re data_entry phases
|
163 |
+
# 0. no data entered yet -> display the file uploader thing
|
164 |
+
# 1. we have some images, but not all the metadata fields are done -> validate button shown, disabled
|
165 |
+
# 2. all data entered -> validate button enabled
|
166 |
+
# 3. validation button pressed, validation done -> enable the inference button.
|
167 |
+
# - at this point do we also want to disable changes to the metadata selectors?
|
168 |
+
# anyway, simple first.
|
169 |
+
|
170 |
+
# if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
|
171 |
+
# # can we advance state? - only when all inputs are set for all uploaded files
|
172 |
+
# all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
|
173 |
+
# if all_inputs_set:
|
174 |
+
# st.session_state.workflow_fsm.complete_current_state()
|
175 |
+
# # -> data_entry_complete
|
176 |
+
# else:
|
177 |
+
# # button, disabled; no state change yet.
|
178 |
+
# st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
|
179 |
+
|
180 |
+
|
181 |
+
# if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
|
182 |
+
# # can we advance state? - only when the validate button is pressed
|
183 |
+
# if st.sidebar.button(":white_check_mark:[**Validate**]"):
|
184 |
+
# # create a dictionary with the submitted observation
|
185 |
+
# tab_log.info(f"{st.session_state.observations}")
|
186 |
+
# df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
|
187 |
+
# #df = pd.DataFrame(st.session_state.observations, index=[0])
|
188 |
+
# with tab_coords:
|
189 |
+
# st.table(df)
|
190 |
+
# # there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
|
191 |
+
# # hmm, maybe it should actually just be "I'm done with data entry"
|
192 |
+
# st.session_state.workflow_fsm.complete_current_state()
|
193 |
+
# # -> data_entry_validated
|
194 |
+
|
195 |
+
# state handling re inference phases (tab_inference)
|
196 |
+
# 3. validation button pressed, validation done -> enable the inference button.
|
197 |
+
# 4. inference button pressed -> ML started. | let's cut this one out, since it would only
|
198 |
+
# make sense if we did it as an async action
|
199 |
+
# 5. ML done -> show results, and manual validation options
|
200 |
+
# 6. manual validation done -> enable the upload buttons
|
201 |
+
#
|
202 |
+
# with tab_inference:
|
203 |
+
# # inside the inference tab, on button press we call the model (on huggingface hub)
|
204 |
+
# # which will be run locally.
|
205 |
+
# # - the model predicts the top 3 most likely species from the input image
|
206 |
+
# # - these species are shown
|
207 |
+
# # - the user can override the species prediction using the dropdown
|
208 |
+
# # - an observation is uploaded if the user chooses.
|
209 |
+
|
210 |
+
|
211 |
+
# if st.session_state.MODE_DEV_STATEFUL:
|
212 |
+
# dbg_show_observation_hashes()
|
213 |
+
|
214 |
+
# add_classifier_header()
|
215 |
+
# # if we are before data_entry_validated, show the button, disabled.
|
216 |
+
# if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
|
217 |
+
# tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
|
218 |
+
# help="Please validate inputs before proceeding",
|
219 |
+
# key="button_infer_ceteans")
|
220 |
+
|
221 |
+
# if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
|
222 |
+
# # show the button, enabled. If pressed, we start the ML model (And advance state)
|
223 |
+
# if tab_inference.button("Identify with cetacean classifier",
|
224 |
+
# key="button_infer_ceteans"):
|
225 |
+
# cetacean_classifier = AutoModelForImageClassification.from_pretrained(
|
226 |
+
# "Saving-Willy/cetacean-classifier",
|
227 |
+
# revision=classifier_revision,
|
228 |
+
# trust_remote_code=True)
|
229 |
+
|
230 |
+
# cetacean_just_classify(cetacean_classifier)
|
231 |
+
# st.session_state.workflow_fsm.complete_current_state()
|
232 |
+
# # trigger a refresh too (refreshhing the prog indicator means the script reruns and
|
233 |
+
# # we can enter the next state - visualising the results / review)
|
234 |
+
# # ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
|
235 |
+
# refresh_progress_display()
|
236 |
+
# #TODO: validate this doesn't harm performance adversely.
|
237 |
+
# st.rerun()
|
238 |
+
|
239 |
+
# elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
|
240 |
+
# # show the results, and allow manual validation
|
241 |
+
# st.markdown("""### Inference results and manual validation/adjustment """)
|
242 |
+
# if st.session_state.MODE_DEV_STATEFUL:
|
243 |
+
# s = ""
|
244 |
+
# for k, v in st.session_state.whale_prediction1.items():
|
245 |
+
# s += f"* Image {k}: {v}\n"
|
246 |
+
|
247 |
+
# st.markdown(s)
|
248 |
+
|
249 |
+
# # add a button to advance the state
|
250 |
+
# if st.button("Confirm species predictions", help="Confirm that all species are selected correctly"):
|
251 |
+
# st.session_state.workflow_fsm.complete_current_state()
|
252 |
+
# # -> manual_inspection_completed
|
253 |
+
# st.rerun()
|
254 |
+
|
255 |
+
# cetacean_show_results_and_review()
|
256 |
+
|
257 |
+
# elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
|
258 |
+
# # show the ML results, and allow the user to upload the observation
|
259 |
+
# st.markdown("""### Inference Results (after manual validation) """)
|
260 |
+
|
261 |
+
|
262 |
+
# if st.button("Upload all observations to THE INTERNET!"):
|
263 |
+
# # let this go through to the push_all func, since it just reports to log for now.
|
264 |
+
# push_all_observations(enable_push=False)
|
265 |
+
# st.session_state.workflow_fsm.complete_current_state()
|
266 |
+
# # -> data_uploaded
|
267 |
+
# st.rerun()
|
268 |
+
|
269 |
+
# cetacean_show_results()
|
270 |
+
|
271 |
+
# elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
|
272 |
+
# # the data has been sent. Lets show the observations again
|
273 |
+
# # but no buttons to upload (or greyed out ok)
|
274 |
+
# st.markdown("""### Observation(s) uploaded - thank you!""")
|
275 |
+
# cetacean_show_results()
|
276 |
+
|
277 |
+
# st.divider()
|
278 |
+
# #df = pd.DataFrame(st.session_state.observations, index=[0])
|
279 |
+
# df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
|
280 |
+
# st.table(df)
|
281 |
+
|
282 |
+
# # didn't decide what the next state is here - I think we are in the terminal state.
|
283 |
+
# #st.session_state.workflow_fsm.complete_current_state()
|
284 |
+
|
285 |
+
|
286 |
+
# # inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
|
287 |
+
# # purposes, an hotdog image classifier) which will be run locally.
|
288 |
+
# # - this model predicts if the image is a hotdog or not, and returns probabilities
|
289 |
+
# # - the input image is the same as for the ceteacean classifier - defined in the sidebar
|
290 |
+
# tab_hotdogs.title("Hot Dog? Or Not?")
|
291 |
+
# tab_hotdogs.write("""
|
292 |
+
# *Run alternative classifer on input images. Here we are using
|
293 |
+
# a binary classifier - hotdog or not - from
|
294 |
+
# huggingface.co/julien-c/hotdog-not-hotdog.*""")
|
295 |
+
|
296 |
+
# if tab_hotdogs.button("Get Hotdog Prediction"):
|
297 |
+
|
298 |
+
# pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
299 |
+
|
300 |
+
# if st.session_state.image is None:
|
301 |
+
# st.info("Please upload an image first.")
|
302 |
+
# #st.info(str(observations.to_dict()))
|
303 |
+
|
304 |
+
# else:
|
305 |
+
# hotdog_classify(pipeline_hot_dog, tab_hotdogs)
|
306 |
+
|
307 |
+
|
308 |
+
# # after all other processing, we can show the stage/state
|
309 |
+
# refresh_progress_display()
|
310 |
+
|
311 |
+
|
312 |
+
if __name__ == "__main__":
|
313 |
+
main()
|
src/pages/1_π_about.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="About",
|
5 |
+
page_icon="π",
|
6 |
+
)
|
7 |
+
|
8 |
+
st.markdown(
|
9 |
+
"""
|
10 |
+
# About
|
11 |
+
We created this web app in [a hackathon](https://sdsc-hackathons.ch/projectPage?projectRef=vUt8BfDJXaAs0UfOesXI|XyWLFpqjq3CX3zrM4uz8).
|
12 |
+
|
13 |
+
This interface is a Proof of Concept of a Community-driven Research Data Infrastructure for the Cetacean Conservation Community.
|
14 |
+
|
15 |
+
Please reach out on [the project Github issues](https://github.com/sdsc-ordes/saving-willy/issues) for feedback, suggestions, or if you want to join the project.
|
16 |
+
|
17 |
+
# Open Source Resources
|
18 |
+
|
19 |
+
## UI Code
|
20 |
+
- The [space is hosted on Hugging Face](https://huggingface.co/spaces/Saving-Willy/saving-willy-space).
|
21 |
+
- The [UI code is available on Github](https://github.com/sdsc-ordes/saving-willy).
|
22 |
+
- The [development space](https://huggingface.co/spaces/Saving-Willy/saving-willy-dev) is also hosted publically on Hugging Face.
|
23 |
+
|
24 |
+
## The Machine Learning Models
|
25 |
+
- The [model](https://huggingface.co/Saving-Willy/cetacean-classifier) is hosted on Hugging Face.
|
26 |
+
- The [original Kaggle model code](https://github.com/knshnb/kaggle-happywhale-1st-place) is open on Github as well.
|
27 |
+
|
28 |
+
## The Data
|
29 |
+
|
30 |
+
(temporary setup, a more stable database is probably desired.)
|
31 |
+
- The dataset is hosted on Hugging Face.
|
32 |
+
- The [dataset syncing code](https://github.com/vancauwe/saving-willy-data-sync) is available on Github.
|
33 |
+
|
34 |
+
# Credits and Thanks
|
35 |
+
|
36 |
+
## Developers
|
37 |
+
- [Rob Mills](https://github.com/rmm-ch)
|
38 |
+
- [Laure Vancauwenberghe](https://github.com/vancauwe)
|
39 |
+
|
40 |
+
## Special Thanks
|
41 |
+
- [EDMAKTUB](https://edmaktub.org) for their advice.
|
42 |
+
- [Swiss Data Science Center](https://www.datascience.ch) for [the hackathon that started the project](https://sdsc-hackathons.ch/projectPage?projectRef=vUt8BfDJXaAs0UfOesXI|XyWLFpqjq3CX3zrM4uz8).
|
43 |
+
- [HappyWhale](https://happywhale.com) for launching [the Kaggle challenge that led to model development](https://www.kaggle.com/competitions/happy-whale-and-dolphin).
|
44 |
+
|
45 |
+
"""
|
46 |
+
)
|
src/pages/2_π_map.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import logging
|
3 |
+
from datasets import disable_caching
|
4 |
+
disable_caching()
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="About",
|
8 |
+
page_icon="π",
|
9 |
+
layout="wide",
|
10 |
+
)
|
11 |
+
|
12 |
+
from maps.obs_map import add_obs_map_header
|
13 |
+
from maps.alps_map import present_alps_map
|
14 |
+
from maps.obs_map import present_obs_map
|
15 |
+
|
16 |
+
############################################################
|
17 |
+
g_logger = logging.getLogger(__name__)
|
18 |
+
USE_BASIC_MAP = False
|
19 |
+
DEV_SIDEBAR_LIB = True
|
20 |
+
############################################################
|
21 |
+
|
22 |
+
# visual structure: a couple of toggles at the top, then the map inlcuding a
|
23 |
+
# dropdown for tileset selection.
|
24 |
+
add_obs_map_header()
|
25 |
+
tab_map_ui_cols = st.columns(2)
|
26 |
+
with tab_map_ui_cols[0]:
|
27 |
+
show_db_points = st.toggle("Show Points from DB", True)
|
28 |
+
with tab_map_ui_cols[1]:
|
29 |
+
dbg_show_extra = st.toggle("Show Extra points (test)", False)
|
30 |
+
|
31 |
+
if show_db_points:
|
32 |
+
# show a nicer map, observations marked, tileset selectable.
|
33 |
+
st_observation = present_obs_map(dbg_show_extra=dbg_show_extra)
|
34 |
+
else:
|
35 |
+
# development map.
|
36 |
+
st_observation = present_alps_map()
|
src/pages/3_π€_data requests.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="Requests",
|
5 |
+
page_icon="π€",
|
6 |
+
)
|
7 |
+
|
8 |
+
from dataset.data_requests import data_prep, show_new_data_view
|
9 |
+
|
10 |
+
st.title("Data Requests")
|
11 |
+
st.write("This page is ensure findability of data across the community.")
|
12 |
+
st.write("You can filter the metadata by longitude, latitude and date. You can select data from multiple actors, for multiple species and make a grouped request. " \
|
13 |
+
"The request for the relevant data will be adressed individually to each owner. ")
|
14 |
+
|
15 |
+
# Initialize the default data view
|
16 |
+
df = data_prep()
|
17 |
+
|
18 |
+
if 'checkbox_states' not in st.session_state:
|
19 |
+
st.session_state.checkbox_states = {}
|
20 |
+
|
21 |
+
if 'lat_range' not in st.session_state:
|
22 |
+
st.session_state.lat_range = (float(df['lat'].min()), float(df['lat'].max()))
|
23 |
+
|
24 |
+
if 'lon_range' not in st.session_state:
|
25 |
+
st.session_state.lon_range = (df['lon'].min(), df['lon'].max())
|
26 |
+
|
27 |
+
if 'date_range' not in st.session_state:
|
28 |
+
st.session_state.date_range = (df['date'].min(), df['date'].max())
|
29 |
+
|
30 |
+
# Request button at the bottom
|
31 |
+
if st.button("REQUEST DATA",
|
32 |
+
type="primary",
|
33 |
+
icon="π"):
|
34 |
+
selected = [k for k, v in st.session_state.checkbox_states.items() if v]
|
35 |
+
if selected:
|
36 |
+
st.success(f"Request submitted for: the specie {', '.join(selected)}")
|
37 |
+
else:
|
38 |
+
st.warning("No selections made.")
|
39 |
+
|
40 |
+
# Latitude range filter
|
41 |
+
lat_min, lat_max = float(df['lat'].min()), float(df['lat'].max())
|
42 |
+
lat_range = st.sidebar.slider(
|
43 |
+
"Latitude range",
|
44 |
+
min_value=float(df['lat'].min()),
|
45 |
+
max_value=float(df['lat'].max()),
|
46 |
+
value=st.session_state.get("lat_range", (df['lat'].min(), df['lat'].max()))
|
47 |
+
)
|
48 |
+
st.session_state.lat_range = lat_range
|
49 |
+
|
50 |
+
# Longitude range filter
|
51 |
+
lon_min, lon_max = float(df['lon'].min()), float(df['lon'].max())
|
52 |
+
lon_range = st.sidebar.slider(
|
53 |
+
"Longitude range",
|
54 |
+
min_value=float(df['lon'].min()),
|
55 |
+
max_value=float(df['lon'].max()),
|
56 |
+
value=st.session_state.get("lon_range", (df['lon'].min(), df['lon'].max()))
|
57 |
+
)
|
58 |
+
st.session_state.lon_range = lon_range
|
59 |
+
# Date range filter
|
60 |
+
date_range = st.sidebar.date_input(
|
61 |
+
"Date range",
|
62 |
+
value=st.session_state.get("date_range", (df['date'].min(), df['date'].max())),
|
63 |
+
min_value=df['date'].min(),
|
64 |
+
max_value=df['date'].max()
|
65 |
+
)
|
66 |
+
st.session_state.date_range = date_range
|
67 |
+
|
68 |
+
# Show authors per specie
|
69 |
+
show_new_data_view(df)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
src/pages/4_π₯_classifiers.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import logging
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="ML Models",
|
8 |
+
page_icon="π₯",
|
9 |
+
)
|
10 |
+
|
11 |
+
from utils.st_logs import init_logging_session_states
|
12 |
+
|
13 |
+
from transformers import pipeline
|
14 |
+
from transformers import AutoModelForImageClassification
|
15 |
+
from classifier.classifier_image import add_classifier_header
|
16 |
+
|
17 |
+
from input.input_handling import setup_input, check_inputs_are_set
|
18 |
+
from input.input_handling import init_input_container_states, add_input_UI_elements, init_input_data_session_states
|
19 |
+
from input.input_handling import dbg_show_observation_hashes
|
20 |
+
|
21 |
+
from utils.workflow_ui import refresh_progress_display, init_workflow_viz, init_workflow_session_states
|
22 |
+
from dataset.hf_push_observations import push_all_observations
|
23 |
+
|
24 |
+
from classifier.classifier_image import cetacean_just_classify, cetacean_show_results_and_review, cetacean_show_results, init_classifier_session_states
|
25 |
+
from classifier.classifier_hotdog import hotdog_classify
|
26 |
+
|
27 |
+
############################################################
|
28 |
+
classifier_name = "Saving-Willy/cetacean-classifier"
|
29 |
+
#classifier_revision = '0f9c15e2db4d64e7f622ade518854b488d8d35e6'
|
30 |
+
classifier_revision = 'main' # default/latest version
|
31 |
+
############################################################
|
32 |
+
|
33 |
+
g_logger = logging.getLogger(__name__)
|
34 |
+
# setup for the ML model on huggingface (our wrapper)
|
35 |
+
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
36 |
+
# one toggle for all the extra debug text
|
37 |
+
if "MODE_DEV_STATEFUL" not in st.session_state:
|
38 |
+
st.session_state.MODE_DEV_STATEFUL = False
|
39 |
+
|
40 |
+
############################################################
|
41 |
+
|
42 |
+
|
43 |
+
# Streamlit app
|
44 |
+
tab_inference, tab_hotdogs= \
|
45 |
+
st.tabs(["Cetecean classifier", "Hotdog classifier"])
|
46 |
+
|
47 |
+
# initialise various session state variables
|
48 |
+
init_logging_session_states() # logging init should be early
|
49 |
+
init_workflow_session_states()
|
50 |
+
init_input_data_session_states()
|
51 |
+
init_input_container_states()
|
52 |
+
init_workflow_viz()
|
53 |
+
init_classifier_session_states()
|
54 |
+
|
55 |
+
# put this early so the progress indicator is at the top (also refreshed at end)
|
56 |
+
refresh_progress_display()
|
57 |
+
|
58 |
+
# create a sidebar, and parse all the input (returned as `observations` object)
|
59 |
+
with st.sidebar:
|
60 |
+
# layout handling
|
61 |
+
add_input_UI_elements()
|
62 |
+
# input elements (file upload, text input, etc)
|
63 |
+
setup_input()
|
64 |
+
|
65 |
+
with tab_inference:
|
66 |
+
if st.session_state.workflow_fsm.is_in_state('doing_data_entry'):
|
67 |
+
# can we advance state? - only when all inputs are set for all uploaded files
|
68 |
+
all_inputs_set = check_inputs_are_set(debug=True, empty_ok=False)
|
69 |
+
if all_inputs_set:
|
70 |
+
st.session_state.workflow_fsm.complete_current_state()
|
71 |
+
# -> data_entry_complete
|
72 |
+
else:
|
73 |
+
# button, disabled; no state change yet.
|
74 |
+
st.sidebar.button(":gray[*Validate*]", disabled=True, help="Please fill in all fields.")
|
75 |
+
|
76 |
+
|
77 |
+
if st.session_state.workflow_fsm.is_in_state('data_entry_complete'):
|
78 |
+
# can we advance state? - only when the validate button is pressed
|
79 |
+
if st.sidebar.button(":white_check_mark:[**Validate**]"):
|
80 |
+
# create a dictionary with the submitted observation
|
81 |
+
|
82 |
+
g_logger.info(f"{st.session_state.observations}")
|
83 |
+
|
84 |
+
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
|
85 |
+
# with tab_coords:
|
86 |
+
# st.table(df)
|
87 |
+
|
88 |
+
# now disable all the input boxes / widgets
|
89 |
+
st.session_state.input_disabled = True
|
90 |
+
|
91 |
+
# there doesn't seem to be any actual validation here?? TODO: find validator function (each element is validated by the input box, but is there something at the whole image level?)
|
92 |
+
# hmm, maybe it should actually just be "I'm done with data entry"
|
93 |
+
st.session_state.workflow_fsm.complete_current_state()
|
94 |
+
# -> data_entry_validated
|
95 |
+
st.rerun() # refresh so the input widgets are immediately disabled
|
96 |
+
|
97 |
+
if st.session_state.MODE_DEV_STATEFUL:
|
98 |
+
dbg_show_observation_hashes()
|
99 |
+
|
100 |
+
add_classifier_header()
|
101 |
+
# if we are before data_entry_validated, show the button, disabled.
|
102 |
+
if not st.session_state.workflow_fsm.is_in_state_or_beyond('data_entry_validated'):
|
103 |
+
tab_inference.button(":gray[*Identify with cetacean classifier*]", disabled=True,
|
104 |
+
help="Please validate inputs before proceeding",
|
105 |
+
key="button_infer_ceteans")
|
106 |
+
|
107 |
+
if st.session_state.workflow_fsm.is_in_state('data_entry_validated'):
|
108 |
+
# show the button, enabled. If pressed, we start the ML model (And advance state)
|
109 |
+
if tab_inference.button("Identify with cetacean classifier",
|
110 |
+
key="button_infer_ceteans"):
|
111 |
+
cetacean_classifier = AutoModelForImageClassification.from_pretrained(
|
112 |
+
classifier_name,
|
113 |
+
revision=classifier_revision,
|
114 |
+
trust_remote_code=True)
|
115 |
+
|
116 |
+
cetacean_just_classify(cetacean_classifier)
|
117 |
+
st.session_state.workflow_fsm.complete_current_state()
|
118 |
+
# trigger a refresh too (refreshhing the prog indicator means the script reruns and
|
119 |
+
# we can enter the next state - visualising the results / review)
|
120 |
+
# ok it doesn't if done programmatically. maybe interacting with teh button? check docs.
|
121 |
+
refresh_progress_display()
|
122 |
+
#TODO: validate this doesn't harm performance adversely.
|
123 |
+
st.rerun()
|
124 |
+
|
125 |
+
elif st.session_state.workflow_fsm.is_in_state('ml_classification_completed'):
|
126 |
+
# show the results, and allow manual validation
|
127 |
+
st.markdown("""### Inference results and manual validation/adjustment """)
|
128 |
+
if st.session_state.MODE_DEV_STATEFUL:
|
129 |
+
s = ""
|
130 |
+
for k, v in st.session_state.whale_prediction1.items():
|
131 |
+
s += f"* Image {k}: {v}\n"
|
132 |
+
|
133 |
+
st.markdown(s)
|
134 |
+
|
135 |
+
# add a button to advance the state
|
136 |
+
if st.button("I have looked over predictions and confirm correct species", icon= "π",
|
137 |
+
type="primary",
|
138 |
+
help="Confirm that all species are selected correctly"):
|
139 |
+
st.session_state.workflow_fsm.complete_current_state()
|
140 |
+
# -> manual_inspection_completed
|
141 |
+
st.rerun()
|
142 |
+
|
143 |
+
cetacean_show_results_and_review()
|
144 |
+
|
145 |
+
elif st.session_state.workflow_fsm.is_in_state('manual_inspection_completed'):
|
146 |
+
# show the ML results, and allow the user to upload the observation
|
147 |
+
st.markdown("""### Inference Results (after manual validation) """)
|
148 |
+
|
149 |
+
|
150 |
+
if st.button("Upload all observations to THE INTERNET!", icon= "β¬οΈ",
|
151 |
+
type="primary",):
|
152 |
+
# let this go through to the push_all func, since it just reports to log for now.
|
153 |
+
push_all_observations(enable_push=False)
|
154 |
+
st.session_state.workflow_fsm.complete_current_state()
|
155 |
+
# -> data_uploaded
|
156 |
+
st.rerun()
|
157 |
+
|
158 |
+
cetacean_show_results()
|
159 |
+
|
160 |
+
elif st.session_state.workflow_fsm.is_in_state('data_uploaded'):
|
161 |
+
# the data has been sent. Lets show the observations again
|
162 |
+
# but no buttons to upload (or greyed out ok)
|
163 |
+
st.markdown("""### Observation(s) uploaded - thank you!""")
|
164 |
+
cetacean_show_results()
|
165 |
+
|
166 |
+
st.divider()
|
167 |
+
df = pd.DataFrame([obs.to_dict() for obs in st.session_state.observations.values()])
|
168 |
+
st.table(df)
|
169 |
+
|
170 |
+
# didn't decide what the next state is here - I think we are in the terminal state.
|
171 |
+
#st.session_state.workflow_fsm.complete_current_state()
|
172 |
+
|
173 |
+
|
174 |
+
with tab_hotdogs:
|
175 |
+
# inside the hotdog tab, on button press we call a 2nd model (totally unrelated at present, just for demo
|
176 |
+
# purposes, an hotdog image classifier) which will be run locally.
|
177 |
+
# - this model predicts if the image is a hotdog or not, and returns probabilities
|
178 |
+
# - the input image is the same as for the ceteacean classifier - defined in the sidebar
|
179 |
+
tab_hotdogs.title("Hot Dog? Or Not?")
|
180 |
+
tab_hotdogs.write("""
|
181 |
+
*Run alternative classifer on input images. Here we are using
|
182 |
+
a binary classifier - hotdog or not - from
|
183 |
+
huggingface.co/julien-c/hotdog-not-hotdog.*""")
|
184 |
+
|
185 |
+
if tab_hotdogs.button("Get Hotdog Prediction"):
|
186 |
+
|
187 |
+
pipeline_hot_dog = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
188 |
+
|
189 |
+
if st.session_state.image is None:
|
190 |
+
st.info("Please upload an image first.")
|
191 |
+
#st.info(str(observations.to_dict()))
|
192 |
+
|
193 |
+
else:
|
194 |
+
hotdog_classify(pipeline_hot_dog, tab_hotdogs)
|
195 |
+
|
196 |
+
|
197 |
+
# after all other processing, we can show the stage/state
|
198 |
+
refresh_progress_display()
|
src/pages/5_π_benchmarking.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="Benchmarking",
|
5 |
+
page_icon="π",
|
6 |
+
layout="wide",
|
7 |
+
)
|
8 |
+
|
9 |
+
st.title("Benchmark of ML models")
|
10 |
+
|
11 |
+
st.write("All credits go to the original Leaderboard on hugging face: https://huggingface.co/spaces/opencompass/opencompass-llm-leaderboard"
|
12 |
+
)
|
13 |
+
st.write("This image serves as a pure placeholder to illustrate benchmarking possibilities.")
|
14 |
+
|
15 |
+
st.image("src/images/design/leaderboard.png", caption="Benchmarking models")
|
src/pages/6_π_challenges.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="Challenges",
|
5 |
+
page_icon="π",
|
6 |
+
layout="wide",
|
7 |
+
)
|
8 |
+
|
9 |
+
st.title("Research Challenges (Kaggle)")
|
10 |
+
|
11 |
+
st.write("Working together to innovate is essential. Here are the current and past challenges on Kaggle organized around cetacean conservation.")
|
12 |
+
|
13 |
+
st.link_button("Click here for the full challenge.",
|
14 |
+
url = "https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.kaggle.com/competitions/happy-whale-and-dolphin&ved=2ahUKEwiIoPjCicaMAxVrzgIHHaDYH6MQFnoECAoQAQ&usg=AOvVaw3Cl2cK7ZwU_jTyDeA5Yg1m"
|
15 |
+
)
|
16 |
+
st.image("src/images/design/challenge2.png",
|
17 |
+
caption= "Ted Cheeseman, Ken Southerland, Walter Reade, and Addison Howard. Happywhale - Whale and Dolphin Identification. https://kaggle.com/competitions/happy-whale-and-dolphin, 2022. Kaggle.")
|
18 |
+
|
19 |
+
|
20 |
+
st.link_button("Click here for the full challenge.",
|
21 |
+
url="https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.kaggle.com/competitions/humpback-whale-identification&ved=2ahUKEwiIoPjCicaMAxVrzgIHHaDYH6MQFnoECB8QAQ&usg=AOvVaw0IdiKQC3GpODtI-fBt-yV3"
|
22 |
+
)
|
23 |
+
st.image("src/images/design/challenge1.png",
|
24 |
+
caption ="Addison Howard, inversion, Ken Southerland, and Ted Cheeseman. Humpback Whale Identification. https://kaggle.com/competitions/humpback-whale-identification, 2018. Kaggle.")
|
src/pages/7_π_gallery.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="ML Models",
|
5 |
+
page_icon="π",
|
6 |
+
layout="wide",
|
7 |
+
)
|
8 |
+
from utils.st_logs import parse_log_buffer, init_logging_session_states
|
9 |
+
|
10 |
+
import whale_gallery as gallery
|
11 |
+
import whale_viewer as viewer
|
12 |
+
|
13 |
+
# here we make a container to allow filtering css properties
|
14 |
+
# specific to the gallery (otherwise we get side effects)
|
15 |
+
tg_cont = st.container(key="swgallery")
|
16 |
+
with tg_cont:
|
17 |
+
gallery.render_whale_gallery(n_cols=4)
|
src/pages/8_π§_coordinates.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import folium
|
3 |
+
from streamlit_folium import st_folium
|
4 |
+
|
5 |
+
st.set_page_config(
|
6 |
+
page_title="Coordinates",
|
7 |
+
page_icon="π§",
|
8 |
+
layout="wide",
|
9 |
+
)
|
10 |
+
|
11 |
+
# the goal of this tab is to allow selection of the new obsvation's location by map click/adjust.
|
12 |
+
st.markdown("Coming later! :construction:")
|
13 |
+
st.markdown(
|
14 |
+
"""*The goal is to allow interactive definition for the coordinates of a new
|
15 |
+
observation, by click/drag points on the map.*""")
|
16 |
+
|
17 |
+
|
18 |
+
st.write("Click on the map to capture a location.")
|
19 |
+
#m = folium.Map(location=visp_loc, zoom_start=7)
|
20 |
+
mm = folium.Map(location=[39.949610, -75.150282], zoom_start=16)
|
21 |
+
folium.Marker( [39.949610, -75.150282], popup="Liberty Bell", tooltip="Liberty Bell"
|
22 |
+
).add_to(mm)
|
23 |
+
|
24 |
+
st_data2 = st_folium(mm, width=725)
|
25 |
+
st.write("below the map...")
|
26 |
+
if st_data2['last_clicked'] is not None:
|
27 |
+
print(st_data2)
|
28 |
+
st.info(st_data2['last_clicked'])
|
src/pages/π_logs.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
|
4 |
+
st.set_page_config(
|
5 |
+
page_title="Logs",
|
6 |
+
page_icon="π",
|
7 |
+
)
|
8 |
+
|
9 |
+
from utils.st_logs import parse_log_buffer
|
10 |
+
|
11 |
+
handler = st.session_state['handler']
|
12 |
+
if handler is not None:
|
13 |
+
records = parse_log_buffer(handler.buffer)
|
14 |
+
st.dataframe(records[::-1], use_container_width=True,)
|
15 |
+
st.info(f"Length of records: {len(records)}")
|
16 |
+
else:
|
17 |
+
st.error("β οΈ No log handler found!")
|
src/utils/metadata_handler.py
CHANGED
@@ -11,10 +11,11 @@ def metadata2md(image_hash:str, debug:bool=False) -> str:
|
|
11 |
str: Markdown-formatted key-value list of metadata
|
12 |
|
13 |
"""
|
|
|
14 |
markdown_str = "\n"
|
15 |
keys_to_print = ["author_email", "latitude", "longitude", "date", "time"]
|
16 |
if debug:
|
17 |
-
keys_to_print += ["
|
18 |
|
19 |
observation = st.session_state.public_observations.get(image_hash, {})
|
20 |
|
|
|
11 |
str: Markdown-formatted key-value list of metadata
|
12 |
|
13 |
"""
|
14 |
+
print(debug)
|
15 |
markdown_str = "\n"
|
16 |
keys_to_print = ["author_email", "latitude", "longitude", "date", "time"]
|
17 |
if debug:
|
18 |
+
keys_to_print += ["image_md5", "selected_class", "top_prediction", "class_overriden"]
|
19 |
|
20 |
observation = st.session_state.public_observations.get(image_hash, {})
|
21 |
|
src/utils/workflow_ui.py
CHANGED
@@ -9,6 +9,11 @@ def init_workflow_session_states():
|
|
9 |
if "workflow_fsm" not in st.session_state:
|
10 |
# create and init the state machine
|
11 |
st.session_state.workflow_fsm = WorkflowFSM(FSM_STATES)
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def refresh_progress_display() -> None:
|
14 |
"""
|
|
|
9 |
if "workflow_fsm" not in st.session_state:
|
10 |
# create and init the state machine
|
11 |
st.session_state.workflow_fsm = WorkflowFSM(FSM_STATES)
|
12 |
+
|
13 |
+
if "input_disabled" not in st.session_state:
|
14 |
+
# after workflow reaches some stage, disable chance to change inputs
|
15 |
+
st.session_state.input_disabled = False
|
16 |
+
|
17 |
|
18 |
def refresh_progress_display() -> None:
|
19 |
"""
|
src/whale_viewer.py
CHANGED
@@ -157,4 +157,6 @@ def display_whale(whale_classes:List[str], i:int, viewcontainer:DeltaGenerator=N
|
|
157 |
image_path = os.path.join(current_dir, "src/images/references/")
|
158 |
image = Image.open(image_path + df_whale_img_ref.loc[whale_classes[i], "WHALE_IMAGES"])
|
159 |
|
160 |
-
viewcontainer.image(image,
|
|
|
|
|
|
157 |
image_path = os.path.join(current_dir, "src/images/references/")
|
158 |
image = Image.open(image_path + df_whale_img_ref.loc[whale_classes[i], "WHALE_IMAGES"])
|
159 |
|
160 |
+
viewcontainer.image(image,
|
161 |
+
caption=df_whale_img_ref.loc[whale_classes[i], "WHALE_REFERENCES"],
|
162 |
+
use_column_width=True)
|
tests/{test_obs_map.py β test_dataset_download.py}
RENAMED
@@ -1,6 +1,6 @@
|
|
1 |
import pytest
|
2 |
from unittest.mock import patch, MagicMock
|
3 |
-
from
|
4 |
|
5 |
# tests for try_download_dataset
|
6 |
# - the main aim here is to mock the function load_dataset which makes external HTTP requests,
|
@@ -9,10 +9,11 @@ from maps.obs_map import try_download_dataset
|
|
9 |
# is the return value, which should have similar form but change according to if an exception was raised or not
|
10 |
# since this function uses st and m_logger to keep track of the download status, we need to mock them too
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
@patch('
|
15 |
-
|
|
|
16 |
# Mock the return value of load_dataset
|
17 |
mock_load_dataset.return_value = {'train': {'latitude': [1], 'longitude': [2], 'predicted_class': ['whale']}}
|
18 |
|
@@ -25,13 +26,11 @@ def test_try_download_dataset_success(mock_logger, mock_st, mock_load_dataset):
|
|
25 |
mock_load_dataset.assert_called_once_with(dataset_id, data_files=data_files)
|
26 |
assert result == {'train': {'latitude': [1], 'longitude': [2], 'predicted_class': ['whale']}}
|
27 |
mock_logger.info.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
28 |
-
mock_st.write.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
29 |
|
30 |
|
31 |
-
@patch('
|
32 |
-
@patch('
|
33 |
-
|
34 |
-
def test_try_download_dataset_failure_known(mock_logger, mock_st, mock_load_dataset):
|
35 |
# testing the case where we've found (can reproduce by removing network connection)
|
36 |
dataset_id = "test_dataset"
|
37 |
data_files = "test_file"
|
@@ -41,15 +40,12 @@ def test_try_download_dataset_failure_known(mock_logger, mock_st, mock_load_data
|
|
41 |
mock_logger.info.assert_any_call(f"Starting to download dataset {dataset_id} from Hugging Face")
|
42 |
mock_load_dataset.assert_called_once_with(dataset_id, data_files=data_files)
|
43 |
mock_logger.error.assert_called_with("Error downloading dataset: Download failed. (after 0.00s).")
|
44 |
-
mock_st.error.assert_called_with("Error downloading dataset: Download failed. (after 0.00s).")
|
45 |
assert result == {}
|
46 |
mock_logger.info.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
47 |
-
mock_st.write.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
48 |
|
49 |
-
@patch('
|
50 |
-
@patch('
|
51 |
-
|
52 |
-
def test_try_download_dataset_failure_unknown(mock_logger, mock_st, mock_load_dataset):
|
53 |
# the cases we haven't found, but should still be handled (maybe network error, etc)
|
54 |
dataset_id = "test_dataset"
|
55 |
data_files = "test_file"
|
@@ -59,7 +55,5 @@ def test_try_download_dataset_failure_unknown(mock_logger, mock_st, mock_load_da
|
|
59 |
mock_logger.info.assert_any_call(f"Starting to download dataset {dataset_id} from Hugging Face")
|
60 |
mock_load_dataset.assert_called_once_with(dataset_id, data_files=data_files)
|
61 |
mock_logger.error.assert_called_with("!!Unknown Error!! downloading dataset: Download engine corrupt. (after 0.00s).")
|
62 |
-
mock_st.error.assert_called_with("!!Unknown Error!! downloading dataset: Download engine corrupt. (after 0.00s).")
|
63 |
assert result == {}
|
64 |
mock_logger.info.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
65 |
-
mock_st.write.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
|
|
1 |
import pytest
|
2 |
from unittest.mock import patch, MagicMock
|
3 |
+
from dataset.download import try_download_dataset
|
4 |
|
5 |
# tests for try_download_dataset
|
6 |
# - the main aim here is to mock the function load_dataset which makes external HTTP requests,
|
|
|
9 |
# is the return value, which should have similar form but change according to if an exception was raised or not
|
10 |
# since this function uses st and m_logger to keep track of the download status, we need to mock them too
|
11 |
|
12 |
+
#@patch('maps.obs_map.load_dataset')
|
13 |
+
#@patch('maps.obs_map.m_logger')
|
14 |
+
@patch('dataset.download.load_dataset')
|
15 |
+
@patch('dataset.download.m_logger')
|
16 |
+
def test_try_download_dataset_success(mock_logger, mock_load_dataset):
|
17 |
# Mock the return value of load_dataset
|
18 |
mock_load_dataset.return_value = {'train': {'latitude': [1], 'longitude': [2], 'predicted_class': ['whale']}}
|
19 |
|
|
|
26 |
mock_load_dataset.assert_called_once_with(dataset_id, data_files=data_files)
|
27 |
assert result == {'train': {'latitude': [1], 'longitude': [2], 'predicted_class': ['whale']}}
|
28 |
mock_logger.info.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
|
|
29 |
|
30 |
|
31 |
+
@patch('dataset.download.load_dataset', side_effect=ValueError("Download failed"))
|
32 |
+
@patch('dataset.download.m_logger')
|
33 |
+
def test_try_download_dataset_failure_known(mock_logger, mock_load_dataset):
|
|
|
34 |
# testing the case where we've found (can reproduce by removing network connection)
|
35 |
dataset_id = "test_dataset"
|
36 |
data_files = "test_file"
|
|
|
40 |
mock_logger.info.assert_any_call(f"Starting to download dataset {dataset_id} from Hugging Face")
|
41 |
mock_load_dataset.assert_called_once_with(dataset_id, data_files=data_files)
|
42 |
mock_logger.error.assert_called_with("Error downloading dataset: Download failed. (after 0.00s).")
|
|
|
43 |
assert result == {}
|
44 |
mock_logger.info.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
|
|
45 |
|
46 |
+
@patch('dataset.download.load_dataset', side_effect=Exception("Download engine corrupt"))
|
47 |
+
@patch('dataset.download.m_logger')
|
48 |
+
def test_try_download_dataset_failure_unknown(mock_logger, mock_load_dataset):
|
|
|
49 |
# the cases we haven't found, but should still be handled (maybe network error, etc)
|
50 |
dataset_id = "test_dataset"
|
51 |
data_files = "test_file"
|
|
|
55 |
mock_logger.info.assert_any_call(f"Starting to download dataset {dataset_id} from Hugging Face")
|
56 |
mock_load_dataset.assert_called_once_with(dataset_id, data_files=data_files)
|
57 |
mock_logger.error.assert_called_with("!!Unknown Error!! downloading dataset: Download engine corrupt. (after 0.00s).")
|
|
|
58 |
assert result == {}
|
59 |
mock_logger.info.assert_called_with("Downloaded dataset: (after 0.00s). ")
|
|
tests/test_demo_input_sidebar.py
CHANGED
@@ -262,10 +262,10 @@ def test_two_input_files_realdata(mock_file_rv: MagicMock, mock_uploadedFile_Lis
|
|
262 |
# and then there are plenty of visual elements, based on the image hashes.
|
263 |
for hash in at.session_state.image_hashes:
|
264 |
# check that each of the 4 inputs is present
|
265 |
-
assert at.sidebar.text_input(key=f"
|
266 |
-
assert at.sidebar.text_input(key=f"
|
267 |
-
assert at.sidebar.date_input(key=f"
|
268 |
-
assert at.sidebar.time_input(key=f"
|
269 |
|
270 |
if 'demo_input_sidebar' in SCRIPT_UNDER_TEST:
|
271 |
verify_metadata_in_demo_display(at, num_files)
|
|
|
262 |
# and then there are plenty of visual elements, based on the image hashes.
|
263 |
for hash in at.session_state.image_hashes:
|
264 |
# check that each of the 4 inputs is present
|
265 |
+
assert at.sidebar.text_input(key=f"input_latitude_anchor_{hash}") is not None
|
266 |
+
assert at.sidebar.text_input(key=f"input_longitude_anchor_{hash}") is not None
|
267 |
+
assert at.sidebar.date_input(key=f"input_date_anchor_{hash}") is not None
|
268 |
+
assert at.sidebar.time_input(key=f"input_time_anchor_{hash}") is not None
|
269 |
|
270 |
if 'demo_input_sidebar' in SCRIPT_UNDER_TEST:
|
271 |
verify_metadata_in_demo_display(at, num_files)
|