File size: 11,760 Bytes
f8bf7d4
 
 
 
 
 
 
 
96df9de
 
 
b582a0e
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
8810ca7
 
 
 
 
 
 
 
f8bf7d4
 
 
96df9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8810ca7
f8bf7d4
 
 
 
 
7c16c6e
 
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96df9de
f8bf7d4
96df9de
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
 
96df9de
 
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
96df9de
 
 
 
 
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
 
 
 
96df9de
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
96df9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b582a0e
 
 
 
 
 
f8bf7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from PIL import Image
from PIL import ExifTags
import re
import datetime
import hashlib
import logging

import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile # for type hinting
from streamlit.delta_generator import DeltaGenerator

import cv2
import numpy as np

m_logger = logging.getLogger(__name__)
# we can set the log level locally for funcs in this module
#g_m_logger.setLevel(logging.DEBUG)
m_logger.setLevel(logging.INFO)

''' 
A module to setup the input handling for the whale observation guidance tool

both the UI elements (setup_input_UI) and the validation functions.
'''
#allowed_image_types = ['webp']
allowed_image_types = ['jpg', 'jpeg', 'png', 'webp']

import random
import string
def generate_random_md5():
    # Generate a random string
    random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=16))
    # Encode the string and compute its MD5 hash
    md5_hash = hashlib.md5(random_string.encode()).hexdigest()
    return md5_hash

# autogenerated class to hold the input data
class InputObservation:
    """
    A class to hold an input observation and associated metadata

    Attributes:
        image (Any): 
            The image associated with the observation.
        latitude (float): 
            The latitude where the observation was made.
        longitude (float): 
            The longitude where the observation was made.
        author_email (str): 
            The email of the author of the observation.
        date (str): 
            The date when the observation was made.
        time (str): 
            The time when the observation was made.
        date_option (str): 
            Additional date option for the observation.
        time_option (str): 
            Additional time option for the observation.
        uploaded_filename (Any): 
            The uploaded filename associated with the observation.

    Methods:
        __str__():
            Returns a string representation of the observation.
        __repr__():
            Returns a string representation of the observation.
        __eq__(other):
            Checks if two observations are equal.
        __ne__(other):
            Checks if two observations are not equal.
        __hash__():
            Returns the hash of the observation.
        to_dict():
            Converts the observation to a dictionary.
        from_dict(data):
            Creates an observation from a dictionary.
        from_input(input):
            Creates an observation from another input observation.
    """
    def __init__(self, image=None, latitude=None, longitude=None, author_email=None, date=None, time=None, date_option=None, time_option=None, uploaded_filename=None):
        self.image = image
        self.latitude = latitude
        self.longitude = longitude
        self.author_email = author_email
        self.date = date
        self.time = time
        self.date_option = date_option
        self.time_option = time_option
        self.uploaded_filename = uploaded_filename

    def __str__(self):
        return f"Observation: {self.image}, {self.latitude}, {self.longitude}, {self.author_email}, {self.date}, {self.time}, {self.date_option}, {self.time_option}, {self.uploaded_filename}"

    def __repr__(self):
        return f"Observation: {self.image}, {self.latitude}, {self.longitude}, {self.author_email}, {self.date}, {self.time}, {self.date_option}, {self.time_option}, {self.uploaded_filename}"

    def __eq__(self, other):
        return (self.image == other.image and self.latitude == other.latitude and self.longitude == other.longitude and 
                self.author_email == other.author_email and self.date == other.date and self.time == other.time and 
                self.date_option == other.date_option and self.time_option == other.time_option and self.uploaded_filename == other.uploaded_filename)

    def __ne__(self, other):
        return not self.__eq__(other)

    def __hash__(self):
        return hash((self.image, self.latitude, self.longitude, self.author_email, self.date, self.time, self.date_option, self.time_option, self.uploaded_filename))

    def to_dict(self):
        return {
            #"image": self.image,
            "image_filename": self.uploaded_filename.name if self.uploaded_filename else None,
            "image_md5": hashlib.md5(self.uploaded_filename.read()).hexdigest() if self.uploaded_filename else generate_random_md5(),
            "latitude": self.latitude,
            "longitude": self.longitude,
            "author_email": self.author_email,
            "date": self.date,
            "time": self.time,
            # "date_option": self.date_option,
            # "time_option": self.time_option,
            "date_option": str(self.date_option),
            "time_option": str(self.time_option),
            "uploaded_filename": self.uploaded_filename
        }

    @classmethod
    def from_dict(cls, data):
        return cls(data["image"], data["latitude"], data["longitude"], data["author_email"], data["date"], data["time"], data["date_option"], data["time_option"], data["uploaded_filename"])

    @classmethod
    def from_input(cls, input):
        return cls(input.image, input.latitude, input.longitude, input.author_email, input.date, input.time, input.date_option, input.time_option, input.uploaded_filename)

    @staticmethod
    def from_input(input):
        return InputObservation(input.image, input.latitude, input.longitude, input.author_email, input.date, input.time, input.date_option, input.time_option, input.uploaded_filename)

    @staticmethod
    def from_dict(data):
        return InputObservation(data["image"], data["latitude"], data["longitude"], data["author_email"], data["date"], data["time"], data["date_option"], data["time_option"], data["uploaded_filename"])


def is_valid_number(number:str) -> bool:
    """
    Check if the given string is a valid number (int or float, sign ok)

    Args:
        number (str): The string to be checked.

    Returns:
        bool: True if the string is a valid number, False otherwise.
    """
    pattern = r'^[-+]?[0-9]*\.?[0-9]+$'
    return re.match(pattern, number) is not None


# Function to validate email address
def is_valid_email(email:str) -> bool:
    """
    Validates if the provided email address is in a correct format.

    Args:
        email (str): The email address to validate.

    Returns:
        bool: True if the email address is valid, False otherwise.
    """
    pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
    return re.match(pattern, email) is not None

# Function to extract date and time from image metadata
def get_image_datetime(image_file: UploadedFile) -> str | None: 
    """
    Extracts the original date and time from the EXIF metadata of an uploaded image file.

    Args:
        image_file (UploadedFile): The uploaded image file from which to extract the date and time.

    Returns:
        str: The original date and time as a string if available, otherwise None.

    Raises:
        Warning: If the date and time could not be extracted from the image metadata.
    """
    try:
        image = Image.open(image_file)
        exif_data = image._getexif()
        if exif_data is not None:
            for tag, value in exif_data.items():
                if ExifTags.TAGS.get(tag) == 'DateTimeOriginal':
                    return value
    except Exception as e: # FIXME: what types of exception?
         st.warning(f"Could not extract date from image metadata. (file: {image_file.name})")
         # TODO: add to logger
    return None


# an arbitrary set of defaults so testing is less painful...
# ideally we add in some randomization to the defaults
spoof_metadata = {
    "latitude": 23.5,
    "longitude": 44,
    "author_email": "[email protected]",
    "date": None,
    "time": None,
}

#def display_whale(whale_classes:List[str], i:int, viewcontainer=None):
def setup_input(
    viewcontainer: DeltaGenerator=None,
    _allowed_image_types: list=None, ) -> InputObservation:
    """
    Sets up the input interface for uploading an image and entering metadata.

    It provides input fields for an image upload, lat/lon, author email, and date-time. 
    In the ideal case, the image metadata will be used to populate location and datetime.

    Parameters:
        viewcontainer (DeltaGenerator, optional): The Streamlit container to use for the input interface. Defaults to st.sidebar.
        _allowed_image_types (list, optional): List of allowed image file types for upload. Defaults to allowed_image_types.

    Returns:
        InputObservation: An object containing the uploaded image and entered metadata.

    """
                
    if viewcontainer is None:
        viewcontainer = st.sidebar
        
    if _allowed_image_types is None:
        _allowed_image_types = allowed_image_types
    

    viewcontainer.title("Input image and data")

    # 1. Image Selector
    uploaded_filename = viewcontainer.file_uploader("Upload an image", type=allowed_image_types)
    image_datetime = None  # For storing date-time from image

    if uploaded_filename is not None:
        # Display the uploaded image
        #image = Image.open(uploaded_filename)
        # load image using cv2 format, so it is compatible with the ML models
        file_bytes = np.asarray(bytearray(uploaded_filename.read()), dtype=np.uint8)
        image = cv2.imdecode(file_bytes, 1)


        viewcontainer.image(image, caption='Uploaded Image.', use_column_width=True)
        # store the image in the session state
        st.session_state.image = image
        

        # Extract and display image date-time
        image_datetime = get_image_datetime(uploaded_filename)
        print(f"[D] image date extracted as {image_datetime}")
        m_logger.debug(f"image date extracted as {image_datetime} (from {uploaded_filename})")
        

    # 2. Latitude Entry Box
    latitude = viewcontainer.text_input("Latitude", spoof_metadata.get('latitude', ""))
    if latitude and not is_valid_number(latitude):
        viewcontainer.error("Please enter a valid latitude (numerical only).")
        m_logger.error(f"Invalid latitude entered: {latitude}.")
    # 3. Longitude Entry Box
    longitude = viewcontainer.text_input("Longitude", spoof_metadata.get('longitude', ""))
    if longitude and not is_valid_number(longitude):
        viewcontainer.error("Please enter a valid longitude (numerical only).")
        m_logger.error(f"Invalid latitude entered: {latitude}.")
        
    # 4. Author Box with Email Address Validator
    author_email = viewcontainer.text_input("Author Email", spoof_metadata.get('author_email', ""))

    if author_email and not is_valid_email(author_email):   
        viewcontainer.error("Please enter a valid email address.")

    # 5. date/time
    ## first from image metadata
    if image_datetime is not None:
        time_value = datetime.datetime.strptime(image_datetime, '%Y:%m:%d %H:%M:%S').time()
        date_value = datetime.datetime.strptime(image_datetime, '%Y:%m:%d %H:%M:%S').date()
    else:
        time_value = datetime.datetime.now().time()  # Default to current time
        date_value = datetime.datetime.now().date()

    ## if not, give user the option to enter manually
    date_option = st.sidebar.date_input("Date", value=date_value)
    time_option = st.sidebar.time_input("Time", time_value)

    observation = InputObservation(image=uploaded_filename, latitude=latitude, longitude=longitude, 
                                   author_email=author_email, date=image_datetime, time=None, 
                                   date_option=date_option, time_option=time_option)
    return observation