Spaces:
Sleeping
Sleeping
File size: 11,760 Bytes
f8bf7d4 96df9de b582a0e f8bf7d4 8810ca7 f8bf7d4 96df9de f8bf7d4 8810ca7 f8bf7d4 7c16c6e f8bf7d4 96df9de f8bf7d4 96df9de f8bf7d4 96df9de f8bf7d4 96df9de f8bf7d4 96df9de f8bf7d4 96df9de f8bf7d4 b582a0e f8bf7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
from PIL import Image
from PIL import ExifTags
import re
import datetime
import hashlib
import logging
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile # for type hinting
from streamlit.delta_generator import DeltaGenerator
import cv2
import numpy as np
m_logger = logging.getLogger(__name__)
# we can set the log level locally for funcs in this module
#g_m_logger.setLevel(logging.DEBUG)
m_logger.setLevel(logging.INFO)
'''
A module to setup the input handling for the whale observation guidance tool
both the UI elements (setup_input_UI) and the validation functions.
'''
#allowed_image_types = ['webp']
allowed_image_types = ['jpg', 'jpeg', 'png', 'webp']
import random
import string
def generate_random_md5():
# Generate a random string
random_string = ''.join(random.choices(string.ascii_letters + string.digits, k=16))
# Encode the string and compute its MD5 hash
md5_hash = hashlib.md5(random_string.encode()).hexdigest()
return md5_hash
# autogenerated class to hold the input data
class InputObservation:
"""
A class to hold an input observation and associated metadata
Attributes:
image (Any):
The image associated with the observation.
latitude (float):
The latitude where the observation was made.
longitude (float):
The longitude where the observation was made.
author_email (str):
The email of the author of the observation.
date (str):
The date when the observation was made.
time (str):
The time when the observation was made.
date_option (str):
Additional date option for the observation.
time_option (str):
Additional time option for the observation.
uploaded_filename (Any):
The uploaded filename associated with the observation.
Methods:
__str__():
Returns a string representation of the observation.
__repr__():
Returns a string representation of the observation.
__eq__(other):
Checks if two observations are equal.
__ne__(other):
Checks if two observations are not equal.
__hash__():
Returns the hash of the observation.
to_dict():
Converts the observation to a dictionary.
from_dict(data):
Creates an observation from a dictionary.
from_input(input):
Creates an observation from another input observation.
"""
def __init__(self, image=None, latitude=None, longitude=None, author_email=None, date=None, time=None, date_option=None, time_option=None, uploaded_filename=None):
self.image = image
self.latitude = latitude
self.longitude = longitude
self.author_email = author_email
self.date = date
self.time = time
self.date_option = date_option
self.time_option = time_option
self.uploaded_filename = uploaded_filename
def __str__(self):
return f"Observation: {self.image}, {self.latitude}, {self.longitude}, {self.author_email}, {self.date}, {self.time}, {self.date_option}, {self.time_option}, {self.uploaded_filename}"
def __repr__(self):
return f"Observation: {self.image}, {self.latitude}, {self.longitude}, {self.author_email}, {self.date}, {self.time}, {self.date_option}, {self.time_option}, {self.uploaded_filename}"
def __eq__(self, other):
return (self.image == other.image and self.latitude == other.latitude and self.longitude == other.longitude and
self.author_email == other.author_email and self.date == other.date and self.time == other.time and
self.date_option == other.date_option and self.time_option == other.time_option and self.uploaded_filename == other.uploaded_filename)
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash((self.image, self.latitude, self.longitude, self.author_email, self.date, self.time, self.date_option, self.time_option, self.uploaded_filename))
def to_dict(self):
return {
#"image": self.image,
"image_filename": self.uploaded_filename.name if self.uploaded_filename else None,
"image_md5": hashlib.md5(self.uploaded_filename.read()).hexdigest() if self.uploaded_filename else generate_random_md5(),
"latitude": self.latitude,
"longitude": self.longitude,
"author_email": self.author_email,
"date": self.date,
"time": self.time,
# "date_option": self.date_option,
# "time_option": self.time_option,
"date_option": str(self.date_option),
"time_option": str(self.time_option),
"uploaded_filename": self.uploaded_filename
}
@classmethod
def from_dict(cls, data):
return cls(data["image"], data["latitude"], data["longitude"], data["author_email"], data["date"], data["time"], data["date_option"], data["time_option"], data["uploaded_filename"])
@classmethod
def from_input(cls, input):
return cls(input.image, input.latitude, input.longitude, input.author_email, input.date, input.time, input.date_option, input.time_option, input.uploaded_filename)
@staticmethod
def from_input(input):
return InputObservation(input.image, input.latitude, input.longitude, input.author_email, input.date, input.time, input.date_option, input.time_option, input.uploaded_filename)
@staticmethod
def from_dict(data):
return InputObservation(data["image"], data["latitude"], data["longitude"], data["author_email"], data["date"], data["time"], data["date_option"], data["time_option"], data["uploaded_filename"])
def is_valid_number(number:str) -> bool:
"""
Check if the given string is a valid number (int or float, sign ok)
Args:
number (str): The string to be checked.
Returns:
bool: True if the string is a valid number, False otherwise.
"""
pattern = r'^[-+]?[0-9]*\.?[0-9]+$'
return re.match(pattern, number) is not None
# Function to validate email address
def is_valid_email(email:str) -> bool:
"""
Validates if the provided email address is in a correct format.
Args:
email (str): The email address to validate.
Returns:
bool: True if the email address is valid, False otherwise.
"""
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return re.match(pattern, email) is not None
# Function to extract date and time from image metadata
def get_image_datetime(image_file: UploadedFile) -> str | None:
"""
Extracts the original date and time from the EXIF metadata of an uploaded image file.
Args:
image_file (UploadedFile): The uploaded image file from which to extract the date and time.
Returns:
str: The original date and time as a string if available, otherwise None.
Raises:
Warning: If the date and time could not be extracted from the image metadata.
"""
try:
image = Image.open(image_file)
exif_data = image._getexif()
if exif_data is not None:
for tag, value in exif_data.items():
if ExifTags.TAGS.get(tag) == 'DateTimeOriginal':
return value
except Exception as e: # FIXME: what types of exception?
st.warning(f"Could not extract date from image metadata. (file: {image_file.name})")
# TODO: add to logger
return None
# an arbitrary set of defaults so testing is less painful...
# ideally we add in some randomization to the defaults
spoof_metadata = {
"latitude": 23.5,
"longitude": 44,
"author_email": "[email protected]",
"date": None,
"time": None,
}
#def display_whale(whale_classes:List[str], i:int, viewcontainer=None):
def setup_input(
viewcontainer: DeltaGenerator=None,
_allowed_image_types: list=None, ) -> InputObservation:
"""
Sets up the input interface for uploading an image and entering metadata.
It provides input fields for an image upload, lat/lon, author email, and date-time.
In the ideal case, the image metadata will be used to populate location and datetime.
Parameters:
viewcontainer (DeltaGenerator, optional): The Streamlit container to use for the input interface. Defaults to st.sidebar.
_allowed_image_types (list, optional): List of allowed image file types for upload. Defaults to allowed_image_types.
Returns:
InputObservation: An object containing the uploaded image and entered metadata.
"""
if viewcontainer is None:
viewcontainer = st.sidebar
if _allowed_image_types is None:
_allowed_image_types = allowed_image_types
viewcontainer.title("Input image and data")
# 1. Image Selector
uploaded_filename = viewcontainer.file_uploader("Upload an image", type=allowed_image_types)
image_datetime = None # For storing date-time from image
if uploaded_filename is not None:
# Display the uploaded image
#image = Image.open(uploaded_filename)
# load image using cv2 format, so it is compatible with the ML models
file_bytes = np.asarray(bytearray(uploaded_filename.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
viewcontainer.image(image, caption='Uploaded Image.', use_column_width=True)
# store the image in the session state
st.session_state.image = image
# Extract and display image date-time
image_datetime = get_image_datetime(uploaded_filename)
print(f"[D] image date extracted as {image_datetime}")
m_logger.debug(f"image date extracted as {image_datetime} (from {uploaded_filename})")
# 2. Latitude Entry Box
latitude = viewcontainer.text_input("Latitude", spoof_metadata.get('latitude', ""))
if latitude and not is_valid_number(latitude):
viewcontainer.error("Please enter a valid latitude (numerical only).")
m_logger.error(f"Invalid latitude entered: {latitude}.")
# 3. Longitude Entry Box
longitude = viewcontainer.text_input("Longitude", spoof_metadata.get('longitude', ""))
if longitude and not is_valid_number(longitude):
viewcontainer.error("Please enter a valid longitude (numerical only).")
m_logger.error(f"Invalid latitude entered: {latitude}.")
# 4. Author Box with Email Address Validator
author_email = viewcontainer.text_input("Author Email", spoof_metadata.get('author_email', ""))
if author_email and not is_valid_email(author_email):
viewcontainer.error("Please enter a valid email address.")
# 5. date/time
## first from image metadata
if image_datetime is not None:
time_value = datetime.datetime.strptime(image_datetime, '%Y:%m:%d %H:%M:%S').time()
date_value = datetime.datetime.strptime(image_datetime, '%Y:%m:%d %H:%M:%S').date()
else:
time_value = datetime.datetime.now().time() # Default to current time
date_value = datetime.datetime.now().date()
## if not, give user the option to enter manually
date_option = st.sidebar.date_input("Date", value=date_value)
time_option = st.sidebar.time_input("Time", time_value)
observation = InputObservation(image=uploaded_filename, latitude=latitude, longitude=longitude,
author_email=author_email, date=image_datetime, time=None,
date_option=date_option, time_option=time_option)
return observation
|