Spaces:
Running
Running
File size: 11,934 Bytes
22f9e0d c283445 22f9e0d c283445 22f9e0d c283445 22f9e0d c283445 22f9e0d c283445 22f9e0d c283445 22f9e0d c283445 22f9e0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from datasets import load_dataset
import json
import gradio as gr
# Load experiments.json to get model configurations
with open('experiments.json', 'r') as f:
EXPERIMENTS = json.load(f)
# Get all unique benchmark subsets from experiments.json
BENCHMARKS = []
for model_config in EXPERIMENTS.values():
for benchmark in model_config['benchmarks'].values():
subset = benchmark['subset']
if subset not in BENCHMARKS:
BENCHMARKS.append(subset)
from datasets import get_dataset_split_names
# Add this near the top with other constants
REPO_OPTIONS = [
"OpenEvals/details_gpt-4o_private",
"OpenEvals/details_claude-3-7-sonnet-20250219_private",
"OpenEvals/details_o3-mini-2025-01-31_private",
"OpenEvals/details_moonshotai__Moonlight-16B-A3B-Instruct_private",
"OpenEvals/details_meta-llama__Llama-3.3-70B-Instruct_private",
"OpenEvals/details_deepseek-ai__DeepSeek-R1-Distill-Llama-70B_private",
"OpenEvals/details_qihoo360__TinyR1-32B-Preview_private",
"OpenEvals/details_openai__gpt-4.5-preview-2025-02-27_private",
"OpenEvals/details_deepseek-ai__DeepSeek-R1-Distill-Qwen-32B_private",
"OpenEvals/details_openai__deepseek-ai__DeepSeek-R1_private",
"OpenEvals/details_Qwen__QwQ-32B_private",
"OpenEvals/details_google__gemma-3-1b-it_private",
"OpenEvals/details_google__gemma-3-12b-it_private",
"OpenEvals/details_google__gemma-3-27b-it_private",
"OpenEvals/details_openai__deepseek-ai__DeepSeek-V3-0324_private",
"OpenEvals/details_openai__deepseek-ai__DeepSeek-V3_private",
"OpenEvals/details_meta-llama__Llama-4-Scout-17B-16E-Instruct_private",
"OpenEvals/details_meta-llama__Llama-4-Maverick-17B-128E-Instruct-FP8_private"
]
def get_model_name_from_repo(repo):
# Extract model name from repository path
# Example: "OpenEvals/details_meta-llama__Llama-4-Maverick-17B-128E-Instruct-FP8_private"
# -> "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
parts = repo.split('/')
model_name = parts[1].replace('details_', '').replace('_private', '')
# Convert double underscores back to forward slashes
model_name = model_name.replace('__', '/')
return model_name
def get_available_benchmarks(repo):
model_name = get_model_name_from_repo(repo)
print(model_name)
if not model_name or model_name not in EXPERIMENTS:
return []
model_config = EXPERIMENTS[model_name]
print(model_config)
return [benchmark['subset'] for benchmark in model_config['benchmarks'].values()]
def get_available_splits(repo, benchmark):
if not benchmark:
return []
return get_dataset_split_names(repo, config_name=benchmark.replace("|", "_").replace(":", "_"))
def load_details_and_results(repo, subset, split):
def worker(example):
example["predictions"] = example["predictions"]
example["gold"] = example["gold"][0]
example["metrics"] = example["metrics"]
return example
details = load_dataset(repo, subset.replace("|", "_").replace(":", "_"), split=split)
results = load_dataset(repo, "results", split=split)
results = eval(results[0]["results"])
columns_to_keep = ['full_prompt', 'gold', 'metrics', 'predictions']
details = details.select_columns(columns_to_keep)
details = details.map(worker)
return details, results
def update_splits(repo, benchmark):
splits = get_available_splits(repo, benchmark)
return gr.Dropdown(choices=splits, value=splits[0] if splits else None)
def display_model_details(repo_name, benchmark, split, example_index):
try:
# Load details for the specific model, benchmark and split
details, _ = load_details_and_results(repo_name, benchmark, split)
example = details[example_index]
except Exception as e:
return f"Error loading model details: {str(e)}"
# Create HTML output
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
# Ground Truth section
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{example['gold']}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
# Model output section
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
html_output += f"<h2 style='margin-top: 0;'>{repo_name}</h2>\n"
html_output += f"<p style='color: #666;'>Split: {split}</p>\n"
# Prompt section
html_output += "<details style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
html_output += "<div style='overflow-x: auto;'>\n"
prompt = example['full_prompt']
if isinstance(prompt, list):
for msg in prompt:
if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
role = msg['role'].title()
content = msg['content'].replace('<', '<').replace('>', '>')
html_output += f"<div style='margin-bottom: 10px;'>\n"
html_output += f"<strong>{role}:</strong>\n"
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0; background: #f8f8f8; padding: 10px; border-radius: 5px;'><code>{content}</code></pre>\n"
html_output += "</div>\n"
else:
content = str(msg).replace('<', '<').replace('>', '>')
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0; background: #f8f8f8; padding: 10px; border-radius: 5px;'><code>{content}</code></pre>\n"
else:
prompt_text = str(prompt).replace('<', '<').replace('>', '>')
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0; background: #f8f8f8; padding: 10px; border-radius: 5px;'><code>{prompt_text}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
html_output += "</details>\n\n"
# Metrics section
html_output += "<details open style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
metrics = example['metrics']
if isinstance(metrics, str):
metrics = eval(metrics)
html_output += "<div style='overflow-x: auto;'>\n"
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
for key, value in metrics.items():
if isinstance(value, float):
value = f"{value:.3f}"
html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n"
html_output += "</table>\n"
html_output += "</div>\n"
html_output += "</details>\n\n"
# Prediction section
prediction = example['predictions'][0] if example['predictions'] else ''
html_output += "<details open style='margin-bottom: 15px;'>\n"
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
word_count = len(prediction.split())
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
html_output += "</summary>\n"
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
html_output += "<div style='overflow-x: auto;'>\n"
prediction = prediction.replace('<', '<').replace('>', '>')
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{prediction}</code></pre>\n"
html_output += "</div>\n"
html_output += "</div>\n"
html_output += "</details>\n"
html_output += "</div>\n</div>"
return html_output
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Model Generation Details")
gr.Markdown("View detailed outputs for a specific model")
with gr.Row():
repo_select = gr.Radio(
choices=["Choose from list", "Custom"],
label="Repository Selection Method",
value="Choose from list",
info="Select how you want to specify the repository"
)
with gr.Row():
repo_dropdown = gr.Dropdown(
choices=REPO_OPTIONS,
label="Repository Name",
value=REPO_OPTIONS[0] if REPO_OPTIONS else None,
visible=True,
info="Select from predefined repositories"
)
repo_custom = gr.Textbox(
label="Custom Repository Name",
placeholder="e.g. OpenEvals/details_custom_model_private",
visible=False,
info="Enter custom repository name"
)
with gr.Row():
benchmark = gr.Dropdown(
label="Benchmark",
choices=[],
info="Select the benchmark subset"
)
split = gr.Dropdown(
label="Split",
choices=[],
info="Select evaluation."
)
with gr.Row():
example_index = gr.Number(
label="Example Index",
value=0,
step=1,
info="Navigate through different examples"
)
submit_btn = gr.Button("Show Results", variant="primary")
# Add this function to handle visibility toggling
def toggle_repo_input(choice):
return {
repo_dropdown: gr.update(visible=(choice == "Choose from list")),
repo_custom: gr.update(visible=(choice == "Custom"))
}
# Add this function to get the active repository name
def get_active_repo(selection_method, dropdown_value, custom_value):
return custom_value if selection_method == "Custom" else dropdown_value
# Update the event handlers
repo_select.change(
fn=toggle_repo_input,
inputs=[repo_select],
outputs=[repo_dropdown, repo_custom]
)
# Update the repository change handler to update available benchmarks
def update_benchmarks(selection_method, dropdown_value, custom_value):
repo = get_active_repo(selection_method, dropdown_value, custom_value)
available_benchmarks = get_available_benchmarks(repo)
print(available_benchmarks)
return gr.Dropdown(choices=available_benchmarks, value=available_benchmarks[0] if available_benchmarks else None)
repo_dropdown.change(
fn=update_benchmarks,
inputs=[repo_select, repo_dropdown, repo_custom],
outputs=benchmark
)
repo_custom.change(
fn=update_benchmarks,
inputs=[repo_select, repo_dropdown, repo_custom],
outputs=benchmark
)
# Update the benchmark change handler
benchmark.change(
fn=lambda selection_method, dropdown, custom, bench: update_splits(
get_active_repo(selection_method, dropdown, custom),
bench
),
inputs=[repo_select, repo_dropdown, repo_custom, benchmark],
outputs=split
)
# Display results
output = gr.HTML()
submit_btn.click(
fn=lambda selection_method, dropdown, custom, bench, split_val, idx: display_model_details(
get_active_repo(selection_method, dropdown, custom),
bench,
split_val,
idx
),
inputs=[repo_select, repo_dropdown, repo_custom, benchmark, split, example_index],
outputs=output
)
if __name__ == "__main__":
demo.launch() |