Spaces:
Runtime error
Runtime error
Commit
·
bcda822
1
Parent(s):
114fe52
add app file
Browse files- app.py +197 -0
- experiments.json +420 -0
app.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from collections import defaultdict
|
3 |
+
import json
|
4 |
+
import gradio as gr
|
5 |
+
from functools import lru_cache
|
6 |
+
|
7 |
+
# Load models and experiments
|
8 |
+
MODELS = [
|
9 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
|
10 |
+
"o3-mini-2025-01-31",
|
11 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
12 |
+
"moonshotai/Moonlight-16B-A3B-Instruct",
|
13 |
+
"gpt-4o",
|
14 |
+
"claude-3-7-sonnet-20250219",
|
15 |
+
"openai/gpt-4.5-preview-2025-02-27"
|
16 |
+
]
|
17 |
+
|
18 |
+
with open("experiments.json") as f:
|
19 |
+
experiments = json.load(f)
|
20 |
+
|
21 |
+
@lru_cache
|
22 |
+
def load_details_and_results(model, benchmark, experiment_tag):
|
23 |
+
def worker(example):
|
24 |
+
example["predictions"] = example["predictions"]
|
25 |
+
example["gold"] = example["gold"][0]
|
26 |
+
example["metrics"] = example["metrics"]
|
27 |
+
return example
|
28 |
+
|
29 |
+
repo = f"SaylorTwift/details_{model.replace('/', '__')}_private"
|
30 |
+
subset = experiments[model]["benchmarks"][benchmark]["subset"].replace("|", "_").replace(":", "_")
|
31 |
+
split = experiments[model]["benchmarks"][benchmark]["tags"][experiment_tag].replace("-", "_")
|
32 |
+
|
33 |
+
details = load_dataset(repo, subset, split=split)
|
34 |
+
results = load_dataset(repo, "results", split=split)
|
35 |
+
|
36 |
+
results = eval(results[0]["results"])
|
37 |
+
|
38 |
+
columns_to_keep = ['full_prompt', 'gold', 'metrics', 'predictions']
|
39 |
+
details = details.select_columns(columns_to_keep)
|
40 |
+
details = details.map(worker)
|
41 |
+
|
42 |
+
return details, results
|
43 |
+
|
44 |
+
# Load all experiment details
|
45 |
+
experiment_details = defaultdict(dict)
|
46 |
+
|
47 |
+
for model in MODELS:
|
48 |
+
for benchmark, benchmark_details in experiments[model]["benchmarks"].items():
|
49 |
+
subset = benchmark_details["subset"]
|
50 |
+
for experiment_tag in benchmark_details["tags"]:
|
51 |
+
details, _ = load_details_and_results(model, benchmark, experiment_tag)
|
52 |
+
experiment_details[model][subset] = details
|
53 |
+
|
54 |
+
def display_model_comparison(selected_models, benchmark, example_index):
|
55 |
+
if not selected_models:
|
56 |
+
return "Please select at least one model to compare."
|
57 |
+
|
58 |
+
outputs = []
|
59 |
+
for model in selected_models:
|
60 |
+
try:
|
61 |
+
example = experiment_details[model][benchmark][example_index]
|
62 |
+
outputs.append({
|
63 |
+
'Model': model.split('/')[-1],
|
64 |
+
'Prediction': example['predictions'][0] if example['predictions'] else '',
|
65 |
+
'Prompt': example['full_prompt'],
|
66 |
+
'Metrics': example['metrics'],
|
67 |
+
'Gold': example['gold']
|
68 |
+
})
|
69 |
+
except (KeyError, IndexError):
|
70 |
+
continue
|
71 |
+
|
72 |
+
if not outputs:
|
73 |
+
return "No results found for the selected combination."
|
74 |
+
|
75 |
+
# Create HTML output with all models
|
76 |
+
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n"
|
77 |
+
|
78 |
+
# Show gold answer at the top with distinct styling
|
79 |
+
if outputs:
|
80 |
+
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n"
|
81 |
+
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
|
82 |
+
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
|
83 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n"
|
84 |
+
html_output += "</div>\n"
|
85 |
+
html_output += "</div>\n"
|
86 |
+
|
87 |
+
for output in outputs:
|
88 |
+
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n"
|
89 |
+
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
|
90 |
+
|
91 |
+
# Format metrics as a clean table
|
92 |
+
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
93 |
+
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
|
94 |
+
metrics = output['Metrics']
|
95 |
+
if isinstance(metrics, str):
|
96 |
+
metrics = eval(metrics)
|
97 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
98 |
+
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
|
99 |
+
for key, value in metrics.items():
|
100 |
+
if isinstance(value, float):
|
101 |
+
value = f"{value:.3f}"
|
102 |
+
html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n"
|
103 |
+
html_output += "</table>\n"
|
104 |
+
html_output += "</div>\n"
|
105 |
+
html_output += "</details>\n\n"
|
106 |
+
|
107 |
+
# Handle prompt formatting with better styling
|
108 |
+
html_output += "<details style='margin-bottom: 15px;'>\n"
|
109 |
+
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
|
110 |
+
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
111 |
+
|
112 |
+
prompt_text = output['Prompt']
|
113 |
+
if isinstance(prompt_text, list):
|
114 |
+
for i, msg in enumerate(prompt_text):
|
115 |
+
if isinstance(msg, dict) and 'content' in msg:
|
116 |
+
role = msg.get('role', 'message').title()
|
117 |
+
html_output += "<div style='margin-bottom: 10px;'>\n"
|
118 |
+
html_output += f"<strong>{role}:</strong>\n"
|
119 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
120 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{msg['content']}</code></pre>\n"
|
121 |
+
html_output += "</div>\n"
|
122 |
+
html_output += "</div>\n"
|
123 |
+
else:
|
124 |
+
html_output += "<div style='margin-bottom: 10px;'>\n"
|
125 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
126 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{json.dumps(msg, indent=2)}</code></pre>\n"
|
127 |
+
html_output += "</div>\n"
|
128 |
+
html_output += "</div>\n"
|
129 |
+
else:
|
130 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
131 |
+
if isinstance(prompt_text, dict) and 'content' in prompt_text:
|
132 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n"
|
133 |
+
else:
|
134 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n"
|
135 |
+
html_output += "</div>\n"
|
136 |
+
|
137 |
+
html_output += "</div>\n"
|
138 |
+
html_output += "</details>\n\n"
|
139 |
+
|
140 |
+
# Style prediction output - now in a collapsible section
|
141 |
+
html_output += "<details open style='margin-bottom: 15px;'>\n"
|
142 |
+
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
|
143 |
+
# Add word count in a muted style
|
144 |
+
word_count = len(output['Prediction'].split())
|
145 |
+
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
|
146 |
+
html_output += "</summary>\n"
|
147 |
+
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n"
|
148 |
+
html_output += "<div style='overflow-x: auto;'>\n"
|
149 |
+
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{output['Prediction']}</code></pre>\n"
|
150 |
+
html_output += "</div>\n"
|
151 |
+
html_output += "</div>\n"
|
152 |
+
html_output += "</details>\n"
|
153 |
+
html_output += "</div>\n\n"
|
154 |
+
|
155 |
+
html_output += "</div>"
|
156 |
+
return html_output
|
157 |
+
|
158 |
+
# Get unique benchmarks
|
159 |
+
available_benchmarks = list(set(
|
160 |
+
benchmark
|
161 |
+
for model in MODELS
|
162 |
+
for benchmark in experiment_details[model].keys()
|
163 |
+
))
|
164 |
+
|
165 |
+
# Create the Gradio interface
|
166 |
+
demo = gr.Interface(
|
167 |
+
fn=display_model_comparison,
|
168 |
+
inputs=[
|
169 |
+
gr.Dropdown(
|
170 |
+
choices=sorted(MODELS),
|
171 |
+
label="Models",
|
172 |
+
multiselect=True,
|
173 |
+
value=MODELS,
|
174 |
+
info="Select models to compare"
|
175 |
+
),
|
176 |
+
gr.Dropdown(
|
177 |
+
choices=sorted(available_benchmarks),
|
178 |
+
label="Benchmark",
|
179 |
+
value=sorted(available_benchmarks)[0] if available_benchmarks else None,
|
180 |
+
info="Choose the evaluation benchmark"
|
181 |
+
),
|
182 |
+
gr.Number(
|
183 |
+
label="Example Index",
|
184 |
+
value=0,
|
185 |
+
step=1,
|
186 |
+
info="Navigate through different examples"
|
187 |
+
)
|
188 |
+
],
|
189 |
+
outputs=gr.HTML(),
|
190 |
+
title="Model Generation Comparison",
|
191 |
+
description="Compare model outputs across different benchmarks and prompts",
|
192 |
+
theme=gr.themes.Soft(),
|
193 |
+
css="button { margin: 0 10px; padding: 5px 15px; }"
|
194 |
+
)
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
demo.launch()
|
experiments.json
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"gpt-4o": {
|
3 |
+
"display_name": "gpt 4o",
|
4 |
+
"provider": "openai",
|
5 |
+
"open": false,
|
6 |
+
"benchmarks": {
|
7 |
+
"math_500": {
|
8 |
+
"subset": "lighteval|math_500|0",
|
9 |
+
"metrics": [
|
10 |
+
"extractive_match"
|
11 |
+
],
|
12 |
+
"tags": {
|
13 |
+
"latest": "2025-02-26T10-14-16.106571"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"gpqa_diamond": {
|
17 |
+
"subset": "lighteval|gpqa:diamond|0",
|
18 |
+
"metrics": [
|
19 |
+
"extractive_match"
|
20 |
+
],
|
21 |
+
"tags": {
|
22 |
+
"latest": "2025-02-26T10-14-16.106571"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"aime_24": {
|
26 |
+
"subset": "lighteval|aime24|0",
|
27 |
+
"metrics": [
|
28 |
+
"extractive_match"
|
29 |
+
],
|
30 |
+
"tags": {
|
31 |
+
"latest": "2025-02-26T10-14-16.106571"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"aime_25": {
|
35 |
+
"subset": "lighteval|aime25|0",
|
36 |
+
"metrics": [
|
37 |
+
"extractive_match"
|
38 |
+
],
|
39 |
+
"tags": {
|
40 |
+
"latest": "2025-02-26T10-14-16.106571"
|
41 |
+
}
|
42 |
+
},
|
43 |
+
"ifeval": {
|
44 |
+
"subset": "extended|ifeval|0",
|
45 |
+
"metrics": [
|
46 |
+
"prompt_level_strict_acc"
|
47 |
+
],
|
48 |
+
"tags": {
|
49 |
+
"latest": "2025-02-26T10-14-16.106571"
|
50 |
+
}
|
51 |
+
}
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"claude-3-7-sonnet-20250219": {
|
55 |
+
"display_name": "Claude 3.7 Sonnet",
|
56 |
+
"provider": "anthropic",
|
57 |
+
"open": false,
|
58 |
+
"benchmarks": {
|
59 |
+
"math_500": {
|
60 |
+
"subset": "lighteval|math_500|0",
|
61 |
+
"metrics": [
|
62 |
+
"extractive_match"
|
63 |
+
],
|
64 |
+
"tags": {
|
65 |
+
"latest": "2025-02-25T14-35-15.137825"
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"gpqa_diamond": {
|
69 |
+
"subset": "lighteval|gpqa:diamond|0",
|
70 |
+
"metrics": [
|
71 |
+
"extractive_match"
|
72 |
+
],
|
73 |
+
"tags": {
|
74 |
+
"latest": "2025-02-25T12-43-49.294245"
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"aime_24": {
|
78 |
+
"subset": "lighteval|aime24|0",
|
79 |
+
"metrics": [
|
80 |
+
"extractive_match"
|
81 |
+
],
|
82 |
+
"tags": {
|
83 |
+
"latest": "2025-02-25T12-37-52.771787"
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"aime_25": {
|
87 |
+
"subset": "lighteval|aime25|0",
|
88 |
+
"metrics": [
|
89 |
+
"extractive_match"
|
90 |
+
],
|
91 |
+
"tags": {
|
92 |
+
"latest": "2025-02-25T12-37-52.771787"
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"ifeval": {
|
96 |
+
"subset": "extended|ifeval|0",
|
97 |
+
"metrics": [
|
98 |
+
"prompt_level_strict_acc"
|
99 |
+
],
|
100 |
+
"tags": {
|
101 |
+
"latest": "2025-02-25T12-24-45.750753"
|
102 |
+
}
|
103 |
+
}
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"o3-mini-2025-01-31": {
|
107 |
+
"display_name": "o3-mini",
|
108 |
+
"provider": "openai",
|
109 |
+
"open": false,
|
110 |
+
"benchmarks": {
|
111 |
+
"math_500": {
|
112 |
+
"subset": "lighteval|math_500|0",
|
113 |
+
"metrics": [
|
114 |
+
"extractive_match"
|
115 |
+
],
|
116 |
+
"tags": {
|
117 |
+
"latest": "2025-02-26T11-37-01.193437"
|
118 |
+
}
|
119 |
+
},
|
120 |
+
"gpqa_diamond": {
|
121 |
+
"subset": "lighteval|gpqa:diamond|0",
|
122 |
+
"metrics": [
|
123 |
+
"extractive_match"
|
124 |
+
],
|
125 |
+
"tags": {
|
126 |
+
"latest": "2025-02-26T11-37-01.193437"
|
127 |
+
}
|
128 |
+
},
|
129 |
+
"aime_24": {
|
130 |
+
"subset": "lighteval|aime24|0",
|
131 |
+
"metrics": [
|
132 |
+
"extractive_match"
|
133 |
+
],
|
134 |
+
"tags": {
|
135 |
+
"latest": "2025-02-26T11-37-01.193437"
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"aime_25": {
|
139 |
+
"subset": "lighteval|aime25|0",
|
140 |
+
"metrics": [
|
141 |
+
"extractive_match"
|
142 |
+
],
|
143 |
+
"tags": {
|
144 |
+
"latest": "2025-02-26T11-37-01.193437"
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"ifeval": {
|
148 |
+
"subset": "extended|ifeval|0",
|
149 |
+
"metrics": [
|
150 |
+
"prompt_level_strict_acc"
|
151 |
+
],
|
152 |
+
"tags": {
|
153 |
+
"latest": "2025-02-26T11-37-01.193437"
|
154 |
+
}
|
155 |
+
}
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"moonshotai/Moonlight-16B-A3B-Instruct": {
|
159 |
+
"display_name": "Moonlight",
|
160 |
+
"provider": "moonshotai",
|
161 |
+
"open": true,
|
162 |
+
"benchmarks": {
|
163 |
+
"math_500": {
|
164 |
+
"subset": "lighteval|math_500|0",
|
165 |
+
"metrics": [
|
166 |
+
"extractive_match"
|
167 |
+
],
|
168 |
+
"tags": {
|
169 |
+
"latest": "2025_02_26T13_32_06.104265"
|
170 |
+
}
|
171 |
+
},
|
172 |
+
"gpqa_diamond": {
|
173 |
+
"subset": "lighteval|gpqa:diamond|0",
|
174 |
+
"metrics": [
|
175 |
+
"extractive_match"
|
176 |
+
],
|
177 |
+
"tags": {
|
178 |
+
"latest": "2025_02_26T13_32_06.104265"
|
179 |
+
}
|
180 |
+
},
|
181 |
+
"aime_24": {
|
182 |
+
"subset": "lighteval|aime24|0",
|
183 |
+
"metrics": [
|
184 |
+
"extractive_match"
|
185 |
+
],
|
186 |
+
"tags": {
|
187 |
+
"latest": "2025_02_26T13_32_06.104265"
|
188 |
+
}
|
189 |
+
},
|
190 |
+
"aime_25": {
|
191 |
+
"subset": "lighteval|aime25|0",
|
192 |
+
"metrics": [
|
193 |
+
"extractive_match"
|
194 |
+
],
|
195 |
+
"tags": {
|
196 |
+
"latest": "2025_02_26T13_32_06.104265"
|
197 |
+
}
|
198 |
+
},
|
199 |
+
"ifeval": {
|
200 |
+
"subset": "extended|ifeval|0",
|
201 |
+
"metrics": [
|
202 |
+
"prompt_level_strict_acc"
|
203 |
+
],
|
204 |
+
"tags": {
|
205 |
+
"latest": "2025_02_26T13_32_06.104265"
|
206 |
+
}
|
207 |
+
}
|
208 |
+
}
|
209 |
+
},
|
210 |
+
"meta-llama/Llama-3.3-70B-Instruct": {
|
211 |
+
"display_name": "Llama 3.3 70B",
|
212 |
+
"provider": "meta",
|
213 |
+
"open": true,
|
214 |
+
"benchmarks": {
|
215 |
+
"math_500": {
|
216 |
+
"subset": "lighteval|math_500|0",
|
217 |
+
"metrics": ["extractive_match"],
|
218 |
+
"tags": {
|
219 |
+
"latest": "2025-02-26T17-13-13.448521"
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"gpqa_diamond": {
|
223 |
+
"subset": "lighteval|gpqa:diamond|0",
|
224 |
+
"metrics": ["extractive_match"],
|
225 |
+
"tags": {
|
226 |
+
"latest": "2025-02-26T17-13-13.448521"
|
227 |
+
}
|
228 |
+
},
|
229 |
+
"aime_24": {
|
230 |
+
"subset": "lighteval|aime24|0",
|
231 |
+
"metrics": ["extractive_match"],
|
232 |
+
"tags": {
|
233 |
+
"latest": "2025-02-26T17-13-13.448521"
|
234 |
+
}
|
235 |
+
},
|
236 |
+
"aime_25": {
|
237 |
+
"subset": "lighteval|aime25|0",
|
238 |
+
"metrics": ["extractive_match"],
|
239 |
+
"tags": {
|
240 |
+
"latest": "2025-02-26T17-13-13.448521"
|
241 |
+
}
|
242 |
+
},
|
243 |
+
"ifeval": {
|
244 |
+
"subset": "extended|ifeval|0",
|
245 |
+
"metrics": ["prompt_level_strict_acc"],
|
246 |
+
"tags": {
|
247 |
+
"latest": "2025-02-26T17-13-13.448521"
|
248 |
+
}
|
249 |
+
}
|
250 |
+
}
|
251 |
+
},
|
252 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B": {
|
253 |
+
"display_name": "DeepSeek Llama 70B",
|
254 |
+
"provider": "deepseek",
|
255 |
+
"open": true,
|
256 |
+
"benchmarks": {
|
257 |
+
"math_500": {
|
258 |
+
"subset": "lighteval|math_500|0",
|
259 |
+
"metrics": ["extractive_match"],
|
260 |
+
"tags": {
|
261 |
+
"latest": "2025-02-27T11-09-04.037858"
|
262 |
+
}
|
263 |
+
},
|
264 |
+
"gpqa_diamond": {
|
265 |
+
"subset": "lighteval|gpqa:diamond|0",
|
266 |
+
"metrics": ["extractive_match"],
|
267 |
+
"tags": {
|
268 |
+
"latest": "2025-02-27T11-09-04.037858"
|
269 |
+
}
|
270 |
+
},
|
271 |
+
"aime_24": {
|
272 |
+
"subset": "lighteval|aime24|0",
|
273 |
+
"metrics": ["extractive_match"],
|
274 |
+
"tags": {
|
275 |
+
"latest": "2025-02-27T11-09-04.037858"
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"aime_25": {
|
279 |
+
"subset": "lighteval|aime25|0",
|
280 |
+
"metrics": ["extractive_match"],
|
281 |
+
"tags": {
|
282 |
+
"latest": "2025-02-27T11-09-04.037858"
|
283 |
+
}
|
284 |
+
},
|
285 |
+
"ifeval": {
|
286 |
+
"subset": "extended|ifeval|0",
|
287 |
+
"metrics": ["prompt_level_strict_acc"],
|
288 |
+
"tags": {
|
289 |
+
"latest": "2025-02-27T14-02-02.414381"
|
290 |
+
}
|
291 |
+
}
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"qihoo360/TinyR1-32B-Preview": {
|
295 |
+
"display_name": "TinyR1 32B",
|
296 |
+
"provider": "qihoo360",
|
297 |
+
"open": true,
|
298 |
+
"benchmarks": {
|
299 |
+
"math_500": {
|
300 |
+
"subset": "lighteval|math_500|0",
|
301 |
+
"metrics": ["extractive_match"],
|
302 |
+
"tags": {
|
303 |
+
"latest": "2025-02-27T13-32-41.564652"
|
304 |
+
}
|
305 |
+
},
|
306 |
+
"gpqa_diamond": {
|
307 |
+
"subset": "lighteval|gpqa:diamond|0",
|
308 |
+
"metrics": ["extractive_match"],
|
309 |
+
"tags": {
|
310 |
+
"latest": "2025-02-27T13-32-41.564652"
|
311 |
+
}
|
312 |
+
},
|
313 |
+
"aime_24": {
|
314 |
+
"subset": "lighteval|aime24|0",
|
315 |
+
"metrics": ["extractive_match"],
|
316 |
+
"tags": {
|
317 |
+
"latest": "2025-02-27T13-32-41.564652"
|
318 |
+
}
|
319 |
+
},
|
320 |
+
"aime_25": {
|
321 |
+
"subset": "lighteval|aime25|0",
|
322 |
+
"metrics": ["extractive_match"],
|
323 |
+
"tags": {
|
324 |
+
"latest": "2025-02-27T13-32-41.564652"
|
325 |
+
}
|
326 |
+
},
|
327 |
+
"ifeval": {
|
328 |
+
"subset": "extended|ifeval|0",
|
329 |
+
"metrics": ["prompt_level_strict_acc"],
|
330 |
+
"tags": {
|
331 |
+
"latest": "2025-02-27T13-32-41.564652"
|
332 |
+
}
|
333 |
+
}
|
334 |
+
}
|
335 |
+
},
|
336 |
+
"openai/gpt-4.5-preview-2025-02-27": {
|
337 |
+
"display_name": "gpt 4.5",
|
338 |
+
"provider": "openai",
|
339 |
+
"open": false,
|
340 |
+
"benchmarks": {
|
341 |
+
"math_500": {
|
342 |
+
"subset": "lighteval|math_500|0",
|
343 |
+
"metrics": ["extractive_match"],
|
344 |
+
"tags": {
|
345 |
+
"latest": "2025-03-03T11-17-20.767980"
|
346 |
+
}
|
347 |
+
},
|
348 |
+
"gpqa_diamond": {
|
349 |
+
"subset": "lighteval|gpqa:diamond|0",
|
350 |
+
"metrics": ["extractive_match"],
|
351 |
+
"tags": {
|
352 |
+
"latest": "2025-03-03T11-35-34.241611"
|
353 |
+
}
|
354 |
+
},
|
355 |
+
"aime_24": {
|
356 |
+
"subset": "lighteval|aime24|0",
|
357 |
+
"metrics": ["extractive_match"],
|
358 |
+
"tags": {
|
359 |
+
"latest": "2025-03-03T11-15-32.836958"
|
360 |
+
}
|
361 |
+
},
|
362 |
+
"aime_25": {
|
363 |
+
"subset": "lighteval|aime25|0",
|
364 |
+
"metrics": ["extractive_match"],
|
365 |
+
"tags": {
|
366 |
+
"latest": "2025-03-03T11-15-32.836958"
|
367 |
+
}
|
368 |
+
},
|
369 |
+
"ifeval": {
|
370 |
+
"subset": "extended|ifeval|0",
|
371 |
+
"metrics": ["prompt_level_strict_acc"],
|
372 |
+
"tags": {
|
373 |
+
"latest": "2025-03-03T11-17-20.767980"
|
374 |
+
}
|
375 |
+
}
|
376 |
+
}
|
377 |
+
},
|
378 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B": {
|
379 |
+
"display_name": "DeepSeek Qwen 32B",
|
380 |
+
"provider": "deepseek",
|
381 |
+
"open": true,
|
382 |
+
"benchmarks": {
|
383 |
+
"math_500": {
|
384 |
+
"subset": "lighteval|math_500|0",
|
385 |
+
"metrics": ["extractive_match"],
|
386 |
+
"tags": {
|
387 |
+
"latest": "2025-03-03T14-51-09.849491"
|
388 |
+
}
|
389 |
+
},
|
390 |
+
"gpqa_diamond": {
|
391 |
+
"subset": "lighteval|gpqa:diamond|0",
|
392 |
+
"metrics": ["extractive_match"],
|
393 |
+
"tags": {
|
394 |
+
"latest": "2025-03-03T14-51-09.849491"
|
395 |
+
}
|
396 |
+
},
|
397 |
+
"aime_24": {
|
398 |
+
"subset": "lighteval|aime24|0",
|
399 |
+
"metrics": ["extractive_match"],
|
400 |
+
"tags": {
|
401 |
+
"latest": "2025-03-03T14-51-09.849491"
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"aime_25": {
|
405 |
+
"subset": "lighteval|aime25|0",
|
406 |
+
"metrics": ["extractive_match"],
|
407 |
+
"tags": {
|
408 |
+
"latest": "2025-03-03T14-51-09.849491"
|
409 |
+
}
|
410 |
+
},
|
411 |
+
"ifeval": {
|
412 |
+
"subset": "extended|ifeval|0",
|
413 |
+
"metrics": ["prompt_level_strict_acc"],
|
414 |
+
"tags": {
|
415 |
+
"latest": "2025-03-03T15-06-10.838105"
|
416 |
+
}
|
417 |
+
}
|
418 |
+
}
|
419 |
+
}
|
420 |
+
}
|