File size: 6,053 Bytes
4b7893b
 
7cee51c
 
29eec6c
b3bd92b
29eec6c
ddbcdf4
 
398db91
4b7893b
 
 
ddbcdf4
fe9f836
 
 
29eec6c
 
 
 
 
 
fe9f836
 
 
 
 
4b7893b
fe9f836
 
 
 
 
 
 
 
29eec6c
fe9f836
ddbcdf4
29eec6c
4b7893b
 
29eec6c
 
 
398db91
 
4b7893b
 
 
fe9f836
4b7893b
 
29eec6c
4b7893b
 
29eec6c
fe9f836
 
29eec6c
4b7893b
398db91
 
4b7893b
398db91
 
 
4b7893b
398db91
 
 
4b7893b
398db91
 
 
d98df44
4b7893b
398db91
 
4b7893b
 
 
 
 
ddbcdf4
29eec6c
 
ddbcdf4
fe9f836
ddbcdf4
29eec6c
ddbcdf4
29eec6c
ddbcdf4
 
 
36ccd09
b3bd92b
36ccd09
b3bd92b
 
ddbcdf4
b3bd92b
 
 
 
 
 
29eec6c
 
fe9f836
29eec6c
4b7893b
29eec6c
4b7893b
 
29eec6c
 
 
 
4b7893b
29eec6c
 
 
4b7893b
 
ddbcdf4
29eec6c
 
 
b3bd92b
29eec6c
 
 
b3bd92b
 
29eec6c
 
 
 
ddbcdf4
29eec6c
4b7893b
fe9f836
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import os
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.llms import Together
from langchain.chains import create_retrieval_chain, create_history_aware_retriever, LLMChain
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
import time

# Load the embedding function
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True}

embedding_function = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    encode_kwargs=encode_kwargs
)

# Load the LLM
llm = Together(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",
    temperature=0.2,
    max_tokens=19096,
    top_k=10,
    together_api_key=os.environ['pilotikval']
)

# Load the summarizeLLM
llmc = Together(
    model="mistralai/Mixtral-8x7B-Instruct-v0.1",
    temperature=0.2,
    max_tokens=1024,
    top_k=1,
    together_api_key=os.environ['pilotikval']
)

msgs = StreamlitChatMessageHistory(key="langchain_messages")
memory = ConversationBufferMemory(chat_memory=msgs, memory_key="chat_history", return_messages=True)

DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")

def _combine_documents(
        docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
    ):
    doc_strings = [format_document(doc, document_prompt) for doc in docs]
    return document_separator.join(doc_strings)

chistory = []

def store_chat_history(role: str, content: str):
    chistory.append({"role": role, "content": content})

def app():
    with st.sidebar:
        st.title("dochatter")
        option = st.selectbox(
            'Which retriever would you like to use?',
            ('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
        )
        if option == 'RespiratoryFishman':
            persist_directory = "./respfishmandbcud/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})
        elif option == 'RespiratoryMurray':
            persist_directory = "./respmurray/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})
        elif option == 'MedMRCP2':
            persist_directory = "./medmrcp2store/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})
        elif option == 'General Medicine':
            persist_directory = "./oxfordmedbookdir/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
            retriever = vectordb.as_retriever(search_kwargs={"k": 7})
        else:
            persist_directory = "./mrcpchromadb/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})

    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    condense_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question which contains the themes of the conversation.
    Chat History:
    {chat_history}
    Follow-Up Input: {question}
    Standalone question:"""
    CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template)

    answer_template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
    {context}
    Question: {question}"""
    ANSWER_PROMPT = ChatPromptTemplate.from_template(answer_template)

    question_generator_chain = LLMChain(llm=llmc, prompt=CONDENSE_QUESTION_PROMPT)
    combine_docs_chain = LLMChain(llm=llm, prompt=ANSWER_PROMPT)

    history_aware_retriever = create_history_aware_retriever(
        llm=llmc,
        retriever=retriever,
        prompt=CONDENSE_QUESTION_PROMPT
    )

    conversational_qa_chain = create_retrieval_chain(
        history_aware_retriever,
        combine_docs_chain
    )

    st.header("Ask Away!")
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])
            store_chat_history(message["role"], message["content"])

    prompts2 = st.chat_input("Say something")

    if prompts2:
        st.session_state.messages.append({"role": "user", "content": prompts2})
        with st.chat_message("user"):
            st.write(prompts2)

    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                for _ in range(3):
                    try:
                        response = conversational_qa_chain.invoke(
                            {
                                "input": prompts2,
                                "chat_history": chistory,
                            }
                        )
                        st.write(response["answer"])
                        message = {"role": "assistant", "content": response["answer"]}
                        st.session_state.messages.append(message)
                        break
                    except Exception as e:
                        st.error(f"An error occurred: {e}")
                        time.sleep(2)

if __name__ == '__main__':
    app()