File size: 6,212 Bytes
4b7893b
 
4bfe10b
 
f7842a2
4bfe10b
 
f7842a2
4bfe10b
f7842a2
4bfe10b
f7842a2
4bfe10b
f7842a2
4b7893b
 
 
f7842a2
fe9f836
 
 
29eec6c
 
 
4bfe10b
 
f7842a2
4bfe10b
29eec6c
 
 
fe9f836
f7842a2
17dad20
fe9f836
 
4b7893b
fe9f836
 
4bfe10b
fe9f836
f7842a2
17dad20
fe9f836
 
29eec6c
fe9f836
4bfe10b
 
4b7893b
 
f7842a2
 
 
4b7893b
 
 
fe9f836
4b7893b
 
4bfe10b
29eec6c
4b7893b
 
29eec6c
fe9f836
 
29eec6c
f7842a2
4b7893b
4bfe10b
f7842a2
4b7893b
4bfe10b
f7842a2
4bfe10b
f7842a2
4b7893b
4bfe10b
f7842a2
4bfe10b
f7842a2
4b7893b
4bfe10b
f7842a2
4bfe10b
f7842a2
d98df44
f7842a2
4b7893b
4bfe10b
f7842a2
4b7893b
 
f7842a2
4b7893b
4bfe10b
f7842a2
29eec6c
 
4bfe10b
fe9f836
4bfe10b
29eec6c
4bfe10b
29eec6c
4bfe10b
 
 
ddbcdf4
4bfe10b
 
 
 
 
 
 
b3bd92b
4bfe10b
 
 
 
 
 
f7842a2
29eec6c
4b7893b
29eec6c
4b7893b
 
29eec6c
 
 
 
4b7893b
29eec6c
 
 
4b7893b
 
4bfe10b
 
 
 
 
 
 
 
 
 
4b7893b
f7842a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import streamlit as st
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_together import Together  # Updated import
from langchain import hub
from operator import itemgetter
from langchain.schema import RunnableParallel, format_document  # Updated import paths
from typing import List, Tuple
from langchain.chains import LLMChain, RetrievalQA, ConversationalRetrievalChain
from langchain.schema.output_parser import StrOutputParser
from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain.schema import RunnableLambda, RunnablePassthrough

# Load the embedding function
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True}

embedding_function = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    encode_kwargs=encode_kwargs
)

# Load the ChromaDB vector store
# persist_directory="./mrcpchromadb/"
# vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")

# Load the LLM
llm = Together(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",
    temperature=0.2,
    max_new_tokens=22000,
    top_k=12,
    together_api_key=os.environ['pilotikval']
)

# Load the summarizeLLM
llmc = Together(
    model="mistralai/Mixtral-8x22B-Instruct-v0.1",
    temperature=0.2,
    max_new_tokens=1000,
    top_k=3,
    together_api_key=os.environ['pilotikval']
)

msgs = StreamlitChatMessageHistory(key="langchain_messages")
memory = ConversationBufferMemory(chat_memory=msgs)

DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")

def _combine_documents(docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"):
    doc_strings = [format_document(doc, document_prompt) for doc in docs]
    return document_separator.join(doc_strings)

chistory = []

def store_chat_history(role: str, content: str):
    chistory.append({"role": role, "content": content})

# Define the Streamlit app
def app():
    with st.sidebar:
        st.title("dochatter")
        option = st.selectbox(
            'Which retriever would you like to use?',
            ('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
        )
        
        if option == 'RespiratoryFishman':
            persist_directory="./respfishmandbcud/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})
        
        elif option == 'RespiratoryMurray':
            persist_directory="./respmurray/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})

        elif option == 'MedMRCP2':
            persist_directory="./medmrcp2store/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})

        elif option == 'General Medicine':
            persist_directory="./oxfordmedbookdir/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
            retriever = vectordb.as_retriever(search_kwargs={"k": 7})
        
        else:
            persist_directory="./mrcpchromadb/"
            vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
            retriever = vectordb.as_retriever(search_kwargs={"k": 5})

    if "messages" not in st.session_state:
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    _template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
    Chat History:
    {chat_history}
    Follow Up Input: {question}
    Standalone question:"""
    CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

    template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
    {context}
    Question: {question}
    """
    ANSWER_PROMPT = ChatPromptTemplate.from_template(template)

    _inputs = RunnableParallel(
        standalone_question=RunnablePassthrough.assign(
            chat_history=lambda x: chistory
        )
        | CONDENSE_QUESTION_PROMPT
        | llmc
        | StrOutputParser(),
    )
    _context = {
        "context": itemgetter("standalone_question") | retriever | _combine_documents,
        "question": lambda x: x["standalone_question"],
    }
    conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm

    st.header("Hello Doctor, How can I help?")
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])
            store_chat_history(message["role"], message["content"])

    prompts2 = st.chat_input("Say something")

    if prompts2:
        st.session_state.messages.append({"role": "user", "content": prompts2})
        with st.chat_message("user"):
            st.write(prompts2)

    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            with st.spinner("Thinking..."):
                response = conversational_qa_chain.invoke(
                {
                    "question": prompts2,
                    "chat_history": chistory,
                }
            )
                st.write(response)
        message = {"role": "assistant", "content": response}
        st.session_state.messages.append(message)

if __name__ == '__main__':
    app()