medchat2 / app.py
Last commit not found
raw
history blame
4.76 kB
import streamlit as st
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_together import Together
from langchain import hub
from operator import itemgetter
from langchain.schema import format_document
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory
from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
# Load the embedding function
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True}
embedding_function = HuggingFaceBgeEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs
)
# Initialize the LLMs
llm = Together(
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
temperature=0.2,
max_new_tokens=22000,
top_k=12,
together_api_key=os.environ['pilotikval']
)
llmc = Together(
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
temperature=0.2,
max_new_tokens=1000,
top_k=3,
together_api_key=os.environ['pilotikval']
)
# Memory setup
msgs = StreamlitChatMessageHistory(key="langchain_messages")
memory = ConversationBufferMemory(chat_memory=msgs)
# Define the prompt templates
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(
"""Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
)
ANSWER_PROMPT = ChatPromptTemplate.from_template(
"""You are helping a doctor. Answer based on the provided context:
{context}
Question: {question}"""
)
# Function to combine documents
def _combine_documents(docs, document_prompt=PromptTemplate.from_template("{page_content}"), document_separator="\n\n"):
doc_strings = [format_document(doc, document_prompt) for doc in docs]
return document_separator.join(doc_strings)
# Define the chain using LCEL
condense_question_chain = RunnableLambda(lambda x: {"chat_history": chistory, "question": x}) | CONDENSE_QUESTION_PROMPT | llmc
retriever_chain = RunnableLambda(lambda x: {"standalone_question": x}) | retriever | _combine_documents
answer_chain = ANSWER_PROMPT | llm
conversational_qa_chain = RunnableParallel(
condense_question=condense_question_chain,
retrieve=retriever_chain,
generate_answer=answer_chain
)
# Define the Streamlit app
def app():
with st.sidebar:
st.title("dochatter")
option = st.selectbox(
'Which retriever would you like to use?',
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
)
# Define retrievers based on option
persist_directory = {
'General Medicine': "./oxfordmedbookdir/",
'RespiratoryFishman': "./respfishmandbcud/",
'RespiratoryMurray': "./respmurray/",
'MedMRCP2': "./medmrcp2store/",
'OldMedicine': "./mrcpchromadb/"
}.get(option, "./mrcpchromadb/")
collection_name = {
'General Medicine': "oxfordmed",
'RespiratoryFishman': "fishmannotescud",
'RespiratoryMurray': "respmurraynotes",
'MedMRCP2': "medmrcp2notes",
'OldMedicine': "mrcppassmednotes"
}.get(option, "mrcppassmednotes")
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name=collection_name)
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
st.header("Ask Away!")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
store_chat_history(message["role"], message["content"])
prompts2 = st.chat_input("Say something")
if prompts2:
st.session_state.messages.append({"role": "user", "content": prompts2})
with st.chat_message("user"):
st.write(prompts2)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = conversational_qa_chain.invoke(
{
"question": prompts2,
"chat_history": chistory,
}
)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
if __name__ == '__main__':
app()