medchat2 / app.py
Sbnos's picture
changing
24337c4 verified
raw
history blame
4.09 kB
import os
import streamlit as st
from together import Together
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
# --- Configuration ---
# TogetherAI API key (env var name pilotikval)
TOGETHER_API_KEY = os.environ.get("pilotikval")
if not TOGETHER_API_KEY:
st.error("Missing pilotikval environment variable.")
st.stop()
# Initialize TogetherAI client
client = Together(api_key=TOGETHER_API_KEY)
# Embeddings setup
EMBED_MODEL_NAME = "BAAI/bge-base-en"
embeddings = HuggingFaceBgeEmbeddings(
model_name=EMBED_MODEL_NAME,
encode_kwargs={"normalize_embeddings": True},
)
# Sidebar: select collection
st.sidebar.title("DocChatter RAG")
collection = st.sidebar.selectbox(
"Choose a document collection:",
['General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine']
)
dirs = {
'General Medicine': './oxfordmedbookdir/',
'RespiratoryFishman': './respfishmandbcud/',
'RespiratoryMurray': './respmurray/',
'MedMRCP2': './medmrcp2store/',
'OldMedicine': './mrcpchromadb/'
}
cols = {
'General Medicine': 'oxfordmed',
'RespiratoryFishman': 'fishmannotescud',
'RespiratoryMurray': 'respmurraynotes',
'MedMRCP2': 'medmrcp2notes',
'OldMedicine': 'mrcppassmednotes'
}
persist_directory = dirs[collection]
collection_name = cols[collection]
# Load Chroma vector store
vectorstore = Chroma(
collection_name=collection_name,
persist_directory=persist_directory,
embedding_function=embeddings
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 20}) # k=20
# System prompt template with instruction for detailed long answers
def build_system(context: str) -> dict:
return {
"role": "system",
"content": (
"You are an expert medical assistant. Provide a thorough, detailed, and complete answer. "
"If you don't know, say you don't know.\n"
"Use the following context from medical docs to answer.\n\n"
"Context:\n" + context
)
}
st.title("🩺 DocChatter RAG (Streaming & Memory)")
# Initialize chat history
if 'chat_history' not in st.session_state:
st.session_state.chat_history = [] # list of dicts {role, content}
# Get user input at top level
user_prompt = st.chat_input("Ask anything about your docs…")
# Tabs for UI
chat_tab, clear_tab = st.tabs(["Chat", "Clear History"])
with chat_tab:
# Display existing chat
for msg in st.session_state.chat_history:
st.chat_message(msg['role']).write(msg['content'])
# On new input
if user_prompt:
# Echo user
st.chat_message("user").write(user_prompt)
st.session_state.chat_history.append({"role": "user", "content": user_prompt})
# Retrieve top-k docs
docs = retriever.get_relevant_documents(user_prompt)
context = "\n---\n".join([d.page_content for d in docs])
# Build message sequence: system + full history
messages = [build_system(context)]
for m in st.session_state.chat_history:
messages.append(m)
# Prepare streaming response
response_container = st.chat_message("assistant")
stream_placeholder = response_container.empty()
answer = ""
# Stream tokens
for token in client.chat.completions.create(
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
messages=messages,
max_tokens=22048,
temperature=0.1,
stream=True
):
if hasattr(token, 'choices') and token.choices[0].delta.content:
delta = token.choices[0].delta.content
answer += delta
stream_placeholder.write(answer)
# Save assistant response
st.session_state.chat_history.append({"role": "assistant", "content": answer})
with clear_tab:
if st.button("🗑️ Clear chat history"):
st.session_state.chat_history = []
st.experimental_rerun()
# (Optional) persist new docs
# vectorstore.persist()