medchat2 / app.py
Sbnos's picture
mainchange cgpt 1
ba25116 verified
raw
history blame
5.93 kB
import streamlit as st
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_together import Together
from langchain import hub
from operator import itemgetter
from langchain.schema import RunnableParallel, format_document
from typing import List, Tuple
from langchain.chains import LLMChain, ConversationalRetrievalChain
from langchain.schema.output_parser import StrOutputParser
from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory, ConversationSummaryMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain.schema import RunnableLambda, RunnablePassthrough
# Load the embedding function
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True}
embedding_function = HuggingFaceBgeEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs
)
# Load the LLM
llm = Together(
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
temperature=0.2,
max_new_tokens=22000,
top_k=12,
together_api_key=os.environ['pilotikval']
)
# Load the summarizeLLM
llmc = Together(
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
temperature=0.2,
max_new_tokens=1000,
top_k=3,
together_api_key=os.environ['pilotikval']
)
msgs = StreamlitChatMessageHistory(key="langchain_messages")
memory = ConversationBufferMemory(chat_memory=msgs)
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"):
doc_strings = [format_document(doc, document_prompt) for doc in docs]
return document_separator.join(doc_strings)
chistory = []
def store_chat_history(role: str, content: str):
chistory.append({"role": role, "content": content})
# Define the Streamlit app
def app():
with st.sidebar:
st.title("dochatter")
option = st.selectbox(
'Which retriever would you like to use?',
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
)
if option == 'RespiratoryFishman':
persist_directory="./respfishmandbcud/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
elif option == 'RespiratoryMurray':
persist_directory="./respmurray/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
elif option == 'MedMRCP2':
persist_directory="./medmrcp2store/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
elif option == 'General Medicine':
persist_directory="./oxfordmedbookdir/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
retriever = vectordb.as_retriever(search_kwargs={"k": 7})
else:
persist_directory="./mrcpchromadb/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
{context}
Question: {question}
"""
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
_inputs = RunnableParallel(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: chistory
)
| CONDENSE_QUESTION_PROMPT
| llmc
| StrOutputParser(),
)
_context = {
"context": itemgetter("standalone_question") | retriever | _combine_documents,
"question": lambda x: x["standalone_question"],
}
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
st.header("Ask Away!")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
store_chat_history(message["role"], message["content"])
prompts2 = st.chat_input("Say something")
if prompts2:
st.session_state.messages.append({"role": "user", "content": prompts2})
with st.chat_message("user"):
st.write(prompts2)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = conversational_qa_chain.invoke(
{
"question": prompts2,
"chat_history": chistory,
}
)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
if __name__ == '__main__':
app()