Sbnos commited on
Commit
12def49
·
verified ·
1 Parent(s): 3c68c4a

mainfile cgpt 7

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -1,14 +1,15 @@
1
  import streamlit as st
2
  import os
3
  import asyncio
4
- from langchain.vectorstores import Chroma
5
- from langchain.embeddings import HuggingFaceBgeEmbeddings
6
  from langchain_together import Together
7
  from langchain import hub
8
  from operator import itemgetter
9
  from langchain.schema import format_document
10
  from langchain.prompts import ChatPromptTemplate, PromptTemplate
11
- from langchain.memory import StreamlitChatMessageHistory, ConversationBufferMemory
 
12
  from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
13
 
14
  # Load the embedding function
@@ -68,13 +69,13 @@ def store_chat_history(role: str, content: str):
68
  def create_conversational_qa_chain(retriever, condense_llm, answer_llm):
69
  condense_question_chain = RunnableLambda(
70
  lambda x: {"chat_history": chistory, "question": x['question']}
71
- ) | CONDENSE_QUESTION_PROMPT | RunnableLambda(lambda x: {"standalone_question": x})
72
 
73
  retrieval_chain = RunnableLambda(
74
- lambda x: x['standalone_question']
75
  ) | retriever | _combine_documents
76
 
77
- answer_chain = ANSWER_PROMPT | answer_llm
78
 
79
  return RunnableParallel(
80
  condense_question=condense_question_chain,
 
1
  import streamlit as st
2
  import os
3
  import asyncio
4
+ from langchain_community.vectorstores import Chroma
5
+ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
6
  from langchain_together import Together
7
  from langchain import hub
8
  from operator import itemgetter
9
  from langchain.schema import format_document
10
  from langchain.prompts import ChatPromptTemplate, PromptTemplate
11
+ from langchain_community.chat_message_histories import StreamlitChatMessageHistory
12
+ from langchain.memory import ConversationBufferMemory
13
  from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
14
 
15
  # Load the embedding function
 
69
  def create_conversational_qa_chain(retriever, condense_llm, answer_llm):
70
  condense_question_chain = RunnableLambda(
71
  lambda x: {"chat_history": chistory, "question": x['question']}
72
+ ) | CONDENSE_QUESTION_PROMPT | RunnableLambda(lambda x: {"standalone_question": x['standalone_question']})
73
 
74
  retrieval_chain = RunnableLambda(
75
+ lambda x: {"standalone_question": x['standalone_question']}
76
  ) | retriever | _combine_documents
77
 
78
+ answer_chain = ANSWER_PROMPT | RunnableLambda(lambda x: {"context": x, "question": x['standalone_question']}) | answer_llm
79
 
80
  return RunnableParallel(
81
  condense_question=condense_question_chain,