mainfile cgpt fin
Browse files
app.py
CHANGED
@@ -1,270 +1,146 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
from langchain_together import Together
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from langchain.
|
12 |
-
from
|
13 |
-
from langchain.schema.output_parser import StrOutputParser
|
14 |
-
from langchain.memory import StreamlitChatMessageHistory
|
15 |
-
from langchain.memory import ConversationBufferMemory
|
16 |
-
from langchain.chains import ConversationalRetrievalChain
|
17 |
-
from langchain.memory import ConversationSummaryMemory
|
18 |
-
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
|
19 |
-
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
20 |
-
|
21 |
-
|
22 |
-
# Load the embedding function
|
23 |
-
model_name = "BAAI/bge-base-en"
|
24 |
-
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
25 |
-
|
26 |
-
embedding_function = HuggingFaceBgeEmbeddings(
|
27 |
-
model_name=model_name,
|
28 |
-
encode_kwargs=encode_kwargs
|
29 |
-
)
|
30 |
-
|
31 |
-
# Load the ChromaDB vector store
|
32 |
-
# persist_directory="./mrcpchromadb/"
|
33 |
-
# vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="mrcppassmednotes")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
#
|
39 |
llm = Together(
|
40 |
-
model="mistralai/Mixtral-
|
41 |
temperature=0.2,
|
42 |
top_k=12,
|
|
|
43 |
together_api_key=os.environ['pilotikval']
|
44 |
)
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
|
49 |
-
temperature=0.2,
|
50 |
-
top_k=3,
|
51 |
-
together_api_key=os.environ['pilotikval']
|
52 |
-
)
|
53 |
-
|
54 |
-
msgs = StreamlitChatMessageHistory(key="langchain_messages")
|
55 |
-
memory = ConversationBufferMemory(chat_memory=msgs)
|
56 |
-
|
57 |
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
):
|
64 |
-
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
65 |
-
return document_separator.join(doc_strings)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
chistory = []
|
70 |
-
|
71 |
-
def store_chat_history(role: str, content: str):
|
72 |
-
# Append the new message to the chat history
|
73 |
-
chistory.append({"role": role, "content": content})
|
74 |
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Define the Streamlit app
|
77 |
def app():
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
with st.sidebar:
|
82 |
-
|
83 |
st.title("dochatter")
|
84 |
-
# Create a dropdown selection box
|
85 |
option = st.selectbox(
|
86 |
'Which retriever would you like to use?',
|
87 |
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
|
88 |
)
|
89 |
-
# Depending on the selected option, choose the appropriate retriever
|
90 |
-
if option == 'RespiratoryFishman':
|
91 |
-
persist_directory="./respfishmandbcud/"
|
92 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="fishmannotescud")
|
93 |
-
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
94 |
-
retriever = retriever # replace with your actual retriever
|
95 |
-
|
96 |
-
if option == 'RespiratoryMurray':
|
97 |
-
persist_directory="./respmurray/"
|
98 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function,collection_name="respmurraynotes")
|
99 |
-
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
100 |
-
retriever = retriever
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
# Session State
|
134 |
-
# Store LLM generated responses
|
135 |
if "messages" not in st.session_state.keys():
|
136 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
## Retry lets go
|
148 |
-
|
149 |
-
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
|
150 |
-
Chat History:
|
151 |
-
{chat_history}
|
152 |
-
Follow Up Input: {question}
|
153 |
-
Standalone question:"""
|
154 |
-
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
155 |
-
|
156 |
-
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
|
157 |
-
{context}
|
158 |
-
Question: {question}
|
159 |
-
"""
|
160 |
-
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
|
161 |
-
|
162 |
-
|
163 |
-
_inputs = RunnableParallel(
|
164 |
-
standalone_question=RunnablePassthrough.assign(
|
165 |
-
chat_history=lambda x: chistory
|
166 |
-
)
|
167 |
-
| CONDENSE_QUESTION_PROMPT
|
168 |
-
| llmc
|
169 |
-
| StrOutputParser(),
|
170 |
-
)
|
171 |
-
_context = {
|
172 |
-
"context": itemgetter("standalone_question") | retriever | _combine_documents,
|
173 |
-
"question": lambda x: x["standalone_question"],
|
174 |
-
}
|
175 |
-
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
st.header("Ask Away!")
|
188 |
-
# Display the messages
|
189 |
for message in st.session_state.messages:
|
190 |
with st.chat_message(message["role"]):
|
191 |
st.write(message["content"])
|
192 |
-
store_chat_history(message["role"], message["content"])
|
193 |
|
194 |
-
# prompt = hub.pull("rlm/rag-prompt")
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
prompts2 = st.chat_input("Say something")
|
200 |
|
201 |
-
# Implement using different book sources, if statements
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
if prompts2:
|
217 |
st.session_state.messages.append({"role": "user", "content": prompts2})
|
218 |
with st.chat_message("user"):
|
219 |
st.write(prompts2)
|
220 |
-
|
221 |
-
|
222 |
|
223 |
if st.session_state.messages[-1]["role"] != "assistant":
|
224 |
with st.chat_message("assistant"):
|
225 |
with st.spinner("Thinking..."):
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
st.write(
|
233 |
-
|
234 |
-
st.session_state.messages.append(message)
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
# Create a button to submit the question
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
# Initialize history
|
267 |
-
history = []
|
268 |
|
269 |
if __name__ == '__main__':
|
270 |
-
app()
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import asyncio
|
4 |
+
import bs4
|
5 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
6 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
from langchain_together import Together
|
9 |
+
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
10 |
+
from langchain_community.document_loaders import WebBaseLoader
|
11 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
12 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
13 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
14 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
15 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Initialize the LLMs
|
18 |
llm = Together(
|
19 |
+
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
20 |
temperature=0.2,
|
21 |
top_k=12,
|
22 |
+
max_tokens=22048,
|
23 |
together_api_key=os.environ['pilotikval']
|
24 |
)
|
25 |
|
26 |
+
# Function to store chat history
|
27 |
+
store = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
model_name = "BAAI/bge-base-en"
|
30 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
31 |
|
32 |
+
embedding_function = HuggingFaceBgeEmbeddings(
|
33 |
+
model_name=model_name,
|
34 |
+
encode_kwargs=encode_kwargs
|
35 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def get_session_history(session_id: str) -> BaseChatMessageHistory:
|
38 |
+
if session_id not in store:
|
39 |
+
store[session_id] = StreamlitChatMessageHistory(key=session_id)
|
40 |
+
return store[session_id]
|
41 |
|
42 |
# Define the Streamlit app
|
43 |
def app():
|
|
|
|
|
|
|
44 |
with st.sidebar:
|
|
|
45 |
st.title("dochatter")
|
|
|
46 |
option = st.selectbox(
|
47 |
'Which retriever would you like to use?',
|
48 |
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
|
49 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Define retrievers based on option
|
52 |
+
persist_directory = {
|
53 |
+
'General Medicine': "./oxfordmedbookdir/",
|
54 |
+
'RespiratoryFishman': "./respfishmandbcud/",
|
55 |
+
'RespiratoryMurray': "./respmurray/",
|
56 |
+
'MedMRCP2': "./medmrcp2store/",
|
57 |
+
'OldMedicine': "./mrcpchromadb/"
|
58 |
+
}.get(option, "./mrcpchromadb/")
|
59 |
+
|
60 |
+
collection_name = {
|
61 |
+
'General Medicine': "oxfordmed",
|
62 |
+
'RespiratoryFishman': "fishmannotescud",
|
63 |
+
'RespiratoryMurray': "respmurraynotes",
|
64 |
+
'MedMRCP2': "medmrcp2notes",
|
65 |
+
'OldMedicine': "mrcppassmednotes"
|
66 |
+
}.get(option, "mrcppassmednotes")
|
67 |
+
|
68 |
+
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name=collection_name)
|
69 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
70 |
+
|
71 |
+
# Define the prompt templates
|
72 |
+
contextualize_q_system_prompt = (
|
73 |
+
"Given a chat history and the latest user question "
|
74 |
+
"which might reference context in the chat history, "
|
75 |
+
"formulate a standalone question which can be understood "
|
76 |
+
"without the chat history. Do NOT answer the question, "
|
77 |
+
"just reformulate it if needed and otherwise return it as is."
|
78 |
+
)
|
79 |
+
contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
80 |
+
[
|
81 |
+
("system", contextualize_q_system_prompt),
|
82 |
+
MessagesPlaceholder("chat_history"),
|
83 |
+
("human", "{input}"),
|
84 |
+
]
|
85 |
+
)
|
86 |
+
history_aware_retriever = create_history_aware_retriever(
|
87 |
+
llm, retriever, contextualize_q_prompt
|
88 |
+
)
|
89 |
|
90 |
+
system_prompt = (
|
91 |
+
"You are an assistant for question-answering tasks. "
|
92 |
+
"Use the following pieces of retrieved context to answer "
|
93 |
+
"the question. If you don't know the answer, say that you "
|
94 |
+
"don't know."
|
95 |
+
"\n\n"
|
96 |
+
"{context}"
|
97 |
+
)
|
98 |
+
qa_prompt = ChatPromptTemplate.from_messages(
|
99 |
+
[
|
100 |
+
("system", system_prompt),
|
101 |
+
MessagesPlaceholder("chat_history"),
|
102 |
+
("human", "{input}"),
|
103 |
+
]
|
104 |
+
)
|
105 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
106 |
+
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
107 |
+
|
108 |
+
# Statefully manage chat history
|
109 |
+
conversational_rag_chain = RunnableWithMessageHistory(
|
110 |
+
rag_chain,
|
111 |
+
get_session_history,
|
112 |
+
input_messages_key="input",
|
113 |
+
history_messages_key="chat_history",
|
114 |
+
output_messages_key="answer",
|
115 |
+
)
|
116 |
|
117 |
# Session State
|
|
|
118 |
if "messages" not in st.session_state.keys():
|
119 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
121 |
st.header("Ask Away!")
|
|
|
122 |
for message in st.session_state.messages:
|
123 |
with st.chat_message(message["role"]):
|
124 |
st.write(message["content"])
|
|
|
125 |
|
|
|
|
|
|
|
|
|
|
|
126 |
prompts2 = st.chat_input("Say something")
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
if prompts2:
|
129 |
st.session_state.messages.append({"role": "user", "content": prompts2})
|
130 |
with st.chat_message("user"):
|
131 |
st.write(prompts2)
|
|
|
|
|
132 |
|
133 |
if st.session_state.messages[-1]["role"] != "assistant":
|
134 |
with st.chat_message("assistant"):
|
135 |
with st.spinner("Thinking..."):
|
136 |
+
final_response = conversational_rag_chain.invoke(
|
137 |
+
{
|
138 |
+
"input": prompts2,
|
139 |
+
},
|
140 |
+
config={"configurable": {"session_id": "current_session"}}
|
141 |
+
)
|
142 |
+
st.write(final_response['answer'])
|
143 |
+
st.session_state.messages.append({"role": "assistant", "content": final_response['answer']})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
if __name__ == '__main__':
|
146 |
+
app()
|