Sbnos commited on
Commit
b99e6d2
·
verified ·
1 Parent(s): 5f4f6b7
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import streamlit as st
3
  from together import Together
4
  from langchain_community.vectorstores import Chroma
5
- # Use the updated HuggingFace Embeddings class
6
  from langchain_huggingface import HuggingFaceEmbeddings
7
 
8
  # --- Configuration ---
@@ -15,7 +14,7 @@ if not TOGETHER_API_KEY:
15
  # Initialize TogetherAI client
16
  client = Together(api_key=TOGETHER_API_KEY)
17
 
18
- # Embeddings setup (new huggingface integration)
19
  EMBED_MODEL_NAME = "BAAI/bge-base-en"
20
  embeddings = HuggingFaceEmbeddings(
21
  model_name=EMBED_MODEL_NAME,
@@ -55,7 +54,8 @@ vectorstore = Chroma(
55
  )
56
  retriever = vectorstore.as_retriever(search_kwargs={"k": 20}) # k=20
57
 
58
- # System prompt template for long, detailed answers
 
59
  def build_system(context: str) -> dict:
60
  """
61
  Build a comprehensive system prompt:
@@ -81,8 +81,6 @@ Retain memory of previous user messages to support follow-up interactions.
81
  """
82
  return {"role": "system", "content": prompt}
83
 
84
- {"role": "system", "content": prompt}
85
-
86
  st.title("🩺 DocChatter RAG (Streaming & Memory)")
87
 
88
  # Initialize chat history
@@ -137,7 +135,6 @@ with chat_tab:
137
  answer += delta
138
  stream_placeholder.write(answer)
139
  except (IndexError, AttributeError):
140
- # Skip empty or malformed token
141
  continue
142
 
143
  # Save assistant response
 
2
  import streamlit as st
3
  from together import Together
4
  from langchain_community.vectorstores import Chroma
 
5
  from langchain_huggingface import HuggingFaceEmbeddings
6
 
7
  # --- Configuration ---
 
14
  # Initialize TogetherAI client
15
  client = Together(api_key=TOGETHER_API_KEY)
16
 
17
+ # Embeddings setup
18
  EMBED_MODEL_NAME = "BAAI/bge-base-en"
19
  embeddings = HuggingFaceEmbeddings(
20
  model_name=EMBED_MODEL_NAME,
 
54
  )
55
  retriever = vectorstore.as_retriever(search_kwargs={"k": 20}) # k=20
56
 
57
+ # System prompt template
58
+
59
  def build_system(context: str) -> dict:
60
  """
61
  Build a comprehensive system prompt:
 
81
  """
82
  return {"role": "system", "content": prompt}
83
 
 
 
84
  st.title("🩺 DocChatter RAG (Streaming & Memory)")
85
 
86
  # Initialize chat history
 
135
  answer += delta
136
  stream_placeholder.write(answer)
137
  except (IndexError, AttributeError):
 
138
  continue
139
 
140
  # Save assistant response