import streamlit as st import os from langchain_community.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceBgeEmbeddings from langchain_community.llms import Together from langchain import hub from operator import itemgetter from langchain.chains import LLMChain from langchain.chains import ConversationalRetrievalChain from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate from langchain.memory import ConversationBufferMemory from langchain_community.chat_message_histories import StreamlitChatMessageHistory import time # Load the embedding function model_name = "BAAI/bge-base-en" encode_kwargs = {'normalize_embeddings': True} embedding_function = HuggingFaceBgeEmbeddings( model_name=model_name, encode_kwargs=encode_kwargs ) # Load the LLM llm = Together( model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.2, max_tokens=19096, top_k=10, together_api_key=os.environ['pilotikval'] ) # Load the summarizeLLM llmc = Together( model="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.2, max_tokens=1024, top_k=1, together_api_key=os.environ['pilotikval'] ) msgs = StreamlitChatMessageHistory(key="langchain_messages") memory = ConversationBufferMemory(chat_memory=msgs, memory_key="chat_history", return_messages=True) DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") def _combine_documents( docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" ): doc_strings = [format_document(doc, document_prompt) for doc in docs] return document_separator.join(doc_strings) chistory = [] def store_chat_history(role: str, content: str): chistory.append({"role": role, "content": content}) def app(): with st.sidebar: st.title("dochatter") option = st.selectbox( 'Which retriever would you like to use?', ('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine') ) if option == 'RespiratoryFishman': persist_directory = "./respfishmandbcud/" vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud") retriever = vectordb.as_retriever(search_kwargs={"k": 5}) elif option == 'RespiratoryMurray': persist_directory = "./respmurray/" vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes") retriever = vectordb.as_retriever(search_kwargs={"k": 5}) elif option == 'MedMRCP2': persist_directory = "./medmrcp2store/" vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes") retriever = vectordb.as_retriever(search_kwargs={"k": 5}) elif option == 'General Medicine': persist_directory = "./oxfordmedbookdir/" vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed") retriever = vectordb.as_retriever(search_kwargs={"k": 7}) else: persist_directory = "./mrcpchromadb/" vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes") retriever = vectordb.as_retriever(search_kwargs={"k": 5}) if "messages" not in st.session_state.keys(): st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] condense_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question which contains the themes of the conversation. Chat History: {chat_history} Follow-Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template) answer_template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context: {context} Question: {question}""" ANSWER_PROMPT = ChatPromptTemplate.from_template(answer_template) conversational_qa_chain = ConversationalRetrievalChain( retriever=retriever, memory=memory, combine_docs_chain=_combine_documents, condense_question_chain=LLMChain(llm=llmc, prompt=CONDENSE_QUESTION_PROMPT), qa_chain=LLMChain(llm=llm, prompt=ANSWER_PROMPT) ) st.header("Ask Away!") for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) store_chat_history(message["role"], message["content"]) prompts2 = st.chat_input("Say something") if prompts2: st.session_state.messages.append({"role": "user", "content": prompts2}) with st.chat_message("user"): st.write(prompts2) if st.session_state.messages[-1]["role"] != "assistant": with st.chat_message("assistant"): with st.spinner("Thinking..."): for _ in range(3): try: response = conversational_qa_chain.invoke( { "question": prompts2, "chat_history": chistory, } ) st.write(response) message = {"role": "assistant", "content": response} st.session_state.messages.append(message) break except Exception as e: st.error(f"An error occurred: {e}") time.sleep(2) if __name__ == '__main__': app()