Spaces:
Sleeping
Sleeping
Added code from semantic search colab
Browse files
app.py
CHANGED
@@ -1,6 +1,117 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
|
5 |
|
6 |
def respond(message, history):
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# STEP 1 FROM SEMANTIC SEARCH
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# STEP 2 FROM SEMANTIC SEARCH
|
9 |
+
# Open the water_cycle.txt file in read mode with UTF-8 encoding
|
10 |
+
with open("water_cycle.txt", "r", encoding="utf-8") as file:
|
11 |
+
# Read the entire contents of the file and store it in a variable
|
12 |
+
water_cycle_text = file.read()
|
13 |
+
|
14 |
+
# Print the text below
|
15 |
+
print(water_cycle_text)
|
16 |
+
|
17 |
+
|
18 |
+
# STEP 3 FROM SEMANTIC SEARCH
|
19 |
+
def preprocess_text(text):
|
20 |
+
# Strip extra whitespace from the beginning and the end of the text
|
21 |
+
cleaned_text = text.strip()
|
22 |
+
|
23 |
+
# Split the cleaned_text by every newline character (\n)
|
24 |
+
chunks = cleaned_text.split("\n")
|
25 |
+
|
26 |
+
# Create an empty list to store cleaned chunks
|
27 |
+
cleaned_chunks = []
|
28 |
+
|
29 |
+
# Write your for-in loop below to clean each chunk and add it to the cleaned_chunks list
|
30 |
+
for chunk in chunks:
|
31 |
+
chunk = chunk.strip()
|
32 |
+
if chunk != "":
|
33 |
+
cleaned_chunks.append(chunk)
|
34 |
+
|
35 |
+
# Print cleaned_chunks
|
36 |
+
print(cleaned_chunks)
|
37 |
+
|
38 |
+
|
39 |
+
# Print the length of cleaned_chunks
|
40 |
+
print(len(cleaned_chunks))
|
41 |
+
|
42 |
+
# Return the cleaned_chunks
|
43 |
+
return cleaned_chunks
|
44 |
+
|
45 |
+
# Call the preprocess_text function and store the result in a cleaned_chunks variable
|
46 |
+
cleaned_chunks = preprocess_text(water_cycle_text) # Complete this line
|
47 |
+
|
48 |
+
#STEP 4 FROM SEMANTIC SEARCH
|
49 |
+
# Load the pre-trained embedding model that converts text to vectors
|
50 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
51 |
+
|
52 |
+
def create_embeddings(text_chunks):
|
53 |
+
# Convert each text chunk into a vector embedding and store as a tensor
|
54 |
+
chunk_embeddings = model.encode(cleaned_chunks, convert_to_tensor=True) # Replace ... with the text_chunks list
|
55 |
+
|
56 |
+
# Print the chunk embeddings
|
57 |
+
print(chunk_embeddings)
|
58 |
+
|
59 |
+
|
60 |
+
# Print the shape of chunk_embeddings
|
61 |
+
print(chunk_embeddings.shape)
|
62 |
+
|
63 |
+
|
64 |
+
# Return the chunk_embeddings
|
65 |
+
return chunk_embeddings
|
66 |
+
|
67 |
+
# Call the create_embeddings function and store the result in a new chunk_embeddings variable
|
68 |
+
chunk_embeddings = create_embeddings(cleaned_chunks) # Complete this line
|
69 |
+
|
70 |
+
#STEP 5 FROM SEMANTIC SEARCH
|
71 |
+
# Define a function to find the most relevant text chunks for a given query, chunk_embeddings, and text_chunks
|
72 |
+
def get_top_chunks(query, chunk_embeddings, text_chunks):
|
73 |
+
# Convert the query text into a vector embedding
|
74 |
+
query_embedding = model.encode(query, convert_to_tensor=True) # Complete this line
|
75 |
+
|
76 |
+
# Normalize the query embedding to unit length for accurate similarity comparison
|
77 |
+
query_embedding_normalized = query_embedding / query_embedding.norm()
|
78 |
+
|
79 |
+
# Normalize all chunk embeddings to unit length for consistent comparison
|
80 |
+
chunk_embeddings_normalized = chunk_embeddings / chunk_embeddings.norm(dim=1, keepdim=True)
|
81 |
+
|
82 |
+
# Calculate cosine similarity between query and all chunks using matrix multiplication
|
83 |
+
similarities = torch.matmul(chunk_embeddings_normalized, query_embedding_normalized) # Complete this line
|
84 |
+
|
85 |
+
# Print the similarities
|
86 |
+
print(similarities)
|
87 |
+
|
88 |
+
|
89 |
+
# Find the indices of the 3 chunks with highest similarity scores
|
90 |
+
top_indices = torch.topk(similarities, k=3).indices
|
91 |
+
|
92 |
+
# Print the top indices
|
93 |
+
print(top_indices)
|
94 |
+
|
95 |
+
# Create an empty list to store the most relevant chunks
|
96 |
+
top_chunks = []
|
97 |
+
|
98 |
+
# Loop through the top indices and retrieve the corresponding text chunks
|
99 |
+
for i in top_indices:
|
100 |
+
top_chunks.append(cleaned_chunks[i])
|
101 |
+
|
102 |
+
# Return the list of most relevant chunks
|
103 |
+
return top_chunks
|
104 |
+
|
105 |
+
print(get_top_chunks("How are you", chunk_embeddings, cleaned_chunks))
|
106 |
+
|
107 |
+
# STEP 6 FROM SEMANTIC SEARCH
|
108 |
+
# Call the get_top_chunks function with the original query
|
109 |
+
top_results = get_top_chunks("How does water get into the sky?", chunk_embeddings, cleaned_chunks) # Complete this line
|
110 |
+
|
111 |
+
# Print the top results
|
112 |
+
print(top_results)
|
113 |
+
|
114 |
+
|
115 |
client = InferenceClient("Qwen/Qwen2.5-72B-Instruct")
|
116 |
|
117 |
def respond(message, history):
|