Spaces:
Sleeping
Sleeping
File size: 16,300 Bytes
6e584e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4",
"authorship_tag": "ABX9TyNiDU9ykIeYxO86Lmuid+ph",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/yl4579/StyleTTS2/blob/main/Colab/StyleTTS2_Finetune_Demo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"### Install packages and download models"
],
"metadata": {
"id": "yLqBa4uYPrqE"
}
},
{
"cell_type": "code",
"source": [
"%%shell\n",
"git clone https://github.com/yl4579/StyleTTS2.git\n",
"cd StyleTTS2\n",
"pip install SoundFile torchaudio munch torch pydub pyyaml librosa nltk matplotlib accelerate transformers phonemizer einops einops-exts tqdm typing-extensions git+https://github.com/resemble-ai/monotonic_align.git\n",
"sudo apt-get install espeak-ng\n",
"git-lfs clone https://huggingface.co/yl4579/StyleTTS2-LibriTTS\n",
"mv StyleTTS2-LibriTTS/Models ."
],
"metadata": {
"id": "H72WF06ZPrTF"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Download dataset (LJSpeech, 200 samples, ~15 minutes of data)\n",
"\n",
"You can definitely do it with fewer samples. This is just a proof of concept with 200 smaples."
],
"metadata": {
"id": "G398sL8wPzTB"
}
},
{
"cell_type": "code",
"source": [
"%cd StyleTTS2\n",
"!rm -rf Data"
],
"metadata": {
"id": "kJuQUBrEPy5C"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"!gdown --id 1vqz26D3yn7OXS2vbfYxfSnpLS6m6tOFP\n",
"!unzip Data.zip"
],
"metadata": {
"id": "mDXW8ZZePuSb"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Change the finetuning config\n",
"\n",
"Depending on the GPU you got, you may want to change the bacth size, max audio length, epiochs and so on."
],
"metadata": {
"id": "_AlBQREWU8ud"
}
},
{
"cell_type": "code",
"source": [
"config_path = \"Configs/config_ft.yml\"\n",
"\n",
"import yaml\n",
"config = yaml.safe_load(open(config_path))"
],
"metadata": {
"id": "7uEITi0hU4I2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"config['data_params']['root_path'] = \"Data/wavs\"\n",
"\n",
"config['batch_size'] = 2 # not enough RAM\n",
"config['max_len'] = 100 # not enough RAM\n",
"config['loss_params']['joint_epoch'] = 110 # we do not do SLM adversarial training due to not enough RAM\n",
"\n",
"with open(config_path, 'w') as outfile:\n",
" yaml.dump(config, outfile, default_flow_style=True)"
],
"metadata": {
"id": "TPTRgOKSVT4K"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Start finetuning\n"
],
"metadata": {
"id": "uUuB_19NWj2Y"
}
},
{
"cell_type": "code",
"source": [
"!python train_finetune.py --config_path ./Configs/config_ft.yml"
],
"metadata": {
"id": "HZVAD5GKWm-O"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Test the model quality\n",
"\n",
"Note that this mainly serves as a proof of concept due to RAM limitation of free Colab instances. A lot of settings are suboptimal. In the future when DDP works for train_second.py, we will also add mixed precision finetuning to save time and RAM. You can also add SLM adversarial training run if you have paid Colab services (such as A100 with 40G of RAM)."
],
"metadata": {
"id": "I0_7wsGkXGfc"
}
},
{
"cell_type": "code",
"source": [
"import nltk\n",
"nltk.download('punkt')"
],
"metadata": {
"id": "OPLphjbncE7p"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import torch\n",
"torch.manual_seed(0)\n",
"torch.backends.cudnn.benchmark = False\n",
"torch.backends.cudnn.deterministic = True\n",
"\n",
"import random\n",
"random.seed(0)\n",
"\n",
"import numpy as np\n",
"np.random.seed(0)\n",
"\n",
"# load packages\n",
"import time\n",
"import random\n",
"import yaml\n",
"from munch import Munch\n",
"import numpy as np\n",
"import torch\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"import torchaudio\n",
"import librosa\n",
"from nltk.tokenize import word_tokenize\n",
"\n",
"from models import *\n",
"from utils import *\n",
"from text_utils import TextCleaner\n",
"textclenaer = TextCleaner()\n",
"\n",
"%matplotlib inline\n",
"\n",
"to_mel = torchaudio.transforms.MelSpectrogram(\n",
" n_mels=80, n_fft=2048, win_length=1200, hop_length=300)\n",
"mean, std = -4, 4\n",
"\n",
"def length_to_mask(lengths):\n",
" mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)\n",
" mask = torch.gt(mask+1, lengths.unsqueeze(1))\n",
" return mask\n",
"\n",
"def preprocess(wave):\n",
" wave_tensor = torch.from_numpy(wave).float()\n",
" mel_tensor = to_mel(wave_tensor)\n",
" mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std\n",
" return mel_tensor\n",
"\n",
"def compute_style(path):\n",
" wave, sr = librosa.load(path, sr=24000)\n",
" audio, index = librosa.effects.trim(wave, top_db=30)\n",
" if sr != 24000:\n",
" audio = librosa.resample(audio, sr, 24000)\n",
" mel_tensor = preprocess(audio).to(device)\n",
"\n",
" with torch.no_grad():\n",
" ref_s = model.style_encoder(mel_tensor.unsqueeze(1))\n",
" ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))\n",
"\n",
" return torch.cat([ref_s, ref_p], dim=1)\n",
"\n",
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
"\n",
"# load phonemizer\n",
"import phonemizer\n",
"global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)\n",
"\n",
"config = yaml.safe_load(open(\"Models/LJSpeech/config_ft.yml\"))\n",
"\n",
"# load pretrained ASR model\n",
"ASR_config = config.get('ASR_config', False)\n",
"ASR_path = config.get('ASR_path', False)\n",
"text_aligner = load_ASR_models(ASR_path, ASR_config)\n",
"\n",
"# load pretrained F0 model\n",
"F0_path = config.get('F0_path', False)\n",
"pitch_extractor = load_F0_models(F0_path)\n",
"\n",
"# load BERT model\n",
"from Utils.PLBERT.util import load_plbert\n",
"BERT_path = config.get('PLBERT_dir', False)\n",
"plbert = load_plbert(BERT_path)\n",
"\n",
"model_params = recursive_munch(config['model_params'])\n",
"model = build_model(model_params, text_aligner, pitch_extractor, plbert)\n",
"_ = [model[key].eval() for key in model]\n",
"_ = [model[key].to(device) for key in model]"
],
"metadata": {
"id": "jIIAoDACXJL0"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"files = [f for f in os.listdir(\"Models/LJSpeech/\") if f.endswith('.pth')]\n",
"sorted_files = sorted(files, key=lambda x: int(x.split('_')[-1].split('.')[0]))"
],
"metadata": {
"id": "eKXRAyyzcMpQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"params_whole = torch.load(\"Models/LJSpeech/\" + sorted_files[-1], map_location='cpu')\n",
"params = params_whole['net']"
],
"metadata": {
"id": "ULuU9-VDb9Pk"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"for key in model:\n",
" if key in params:\n",
" print('%s loaded' % key)\n",
" try:\n",
" model[key].load_state_dict(params[key])\n",
" except:\n",
" from collections import OrderedDict\n",
" state_dict = params[key]\n",
" new_state_dict = OrderedDict()\n",
" for k, v in state_dict.items():\n",
" name = k[7:] # remove `module.`\n",
" new_state_dict[name] = v\n",
" # load params\n",
" model[key].load_state_dict(new_state_dict, strict=False)\n",
"# except:\n",
"# _load(params[key], model[key])\n",
"_ = [model[key].eval() for key in model]"
],
"metadata": {
"id": "J-U29yIYc2ea"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule"
],
"metadata": {
"id": "jrPQ_Yrwc3n6"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"sampler = DiffusionSampler(\n",
" model.diffusion.diffusion,\n",
" sampler=ADPM2Sampler(),\n",
" sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters\n",
" clamp=False\n",
")"
],
"metadata": {
"id": "n2CWYNoqc455"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):\n",
" text = text.strip()\n",
" ps = global_phonemizer.phonemize([text])\n",
" ps = word_tokenize(ps[0])\n",
" ps = ' '.join(ps)\n",
" tokens = textclenaer(ps)\n",
" tokens.insert(0, 0)\n",
" tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)\n",
"\n",
" with torch.no_grad():\n",
" input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)\n",
" text_mask = length_to_mask(input_lengths).to(device)\n",
"\n",
" t_en = model.text_encoder(tokens, input_lengths, text_mask)\n",
" bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())\n",
" d_en = model.bert_encoder(bert_dur).transpose(-1, -2)\n",
"\n",
" s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),\n",
" embedding=bert_dur,\n",
" embedding_scale=embedding_scale,\n",
" features=ref_s, # reference from the same speaker as the embedding\n",
" num_steps=diffusion_steps).squeeze(1)\n",
"\n",
"\n",
" s = s_pred[:, 128:]\n",
" ref = s_pred[:, :128]\n",
"\n",
" ref = alpha * ref + (1 - alpha) * ref_s[:, :128]\n",
" s = beta * s + (1 - beta) * ref_s[:, 128:]\n",
"\n",
" d = model.predictor.text_encoder(d_en,\n",
" s, input_lengths, text_mask)\n",
"\n",
" x, _ = model.predictor.lstm(d)\n",
" duration = model.predictor.duration_proj(x)\n",
"\n",
" duration = torch.sigmoid(duration).sum(axis=-1)\n",
" pred_dur = torch.round(duration.squeeze()).clamp(min=1)\n",
"\n",
" pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))\n",
" c_frame = 0\n",
" for i in range(pred_aln_trg.size(0)):\n",
" pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1\n",
" c_frame += int(pred_dur[i].data)\n",
"\n",
" # encode prosody\n",
" en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))\n",
" if model_params.decoder.type == \"hifigan\":\n",
" asr_new = torch.zeros_like(en)\n",
" asr_new[:, :, 0] = en[:, :, 0]\n",
" asr_new[:, :, 1:] = en[:, :, 0:-1]\n",
" en = asr_new\n",
"\n",
" F0_pred, N_pred = model.predictor.F0Ntrain(en, s)\n",
"\n",
" asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))\n",
" if model_params.decoder.type == \"hifigan\":\n",
" asr_new = torch.zeros_like(asr)\n",
" asr_new[:, :, 0] = asr[:, :, 0]\n",
" asr_new[:, :, 1:] = asr[:, :, 0:-1]\n",
" asr = asr_new\n",
"\n",
" out = model.decoder(asr,\n",
" F0_pred, N_pred, ref.squeeze().unsqueeze(0))\n",
"\n",
"\n",
" return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later"
],
"metadata": {
"id": "2x5kVb3nc_eY"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Synthesize speech"
],
"metadata": {
"id": "O159JnwCc6CC"
}
},
{
"cell_type": "code",
"source": [
"text = '''Maltby and Company would issue warrants on them deliverable to the importer, and the goods were then passed to be stored in neighboring warehouses.\n",
"'''"
],
"metadata": {
"id": "ThciXQ6rc9Eq"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# get a random reference in the training set, note that it doesn't matter which one you use\n",
"path = \"Data/wavs/LJ001-0110.wav\"\n",
"# this style vector ref_s can be saved as a parameter together with the model weights\n",
"ref_s = compute_style(path)"
],
"metadata": {
"id": "jldPkJyCc83a"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"start = time.time()\n",
"wav = inference(text, ref_s, alpha=0.9, beta=0.9, diffusion_steps=10, embedding_scale=1)\n",
"rtf = (time.time() - start) / (len(wav) / 24000)\n",
"print(f\"RTF = {rtf:5f}\")\n",
"import IPython.display as ipd\n",
"display(ipd.Audio(wav, rate=24000, normalize=False))"
],
"metadata": {
"id": "_mIU0jqDdQ-c"
},
"execution_count": null,
"outputs": []
}
]
}
|