Spaces:
Running
Running
update the UI
Browse files- .DS_Store +0 -0
- .gitignore +3 -0
- app.py +54 -260
- requirements.txt +1 -0
- src/leaderboard/load_results.py +2 -1
.DS_Store
DELETED
Binary file (6.15 kB)
|
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*__pycache__/
|
2 |
+
eval-results/
|
3 |
+
.DS_Store
|
app.py
CHANGED
@@ -3,6 +3,7 @@ import pandas as pd
|
|
3 |
import os
|
4 |
from huggingface_hub import snapshot_download, login
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
6 |
|
7 |
from src.display.about import (
|
8 |
CITATION_BUTTON_LABEL,
|
@@ -39,59 +40,6 @@ TYPES = ['number', 'markdown', 'str', 'str', 'number', 'number', 'number', 'numb
|
|
39 |
# Load the data from the csv file
|
40 |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20240808.csv'
|
41 |
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
|
42 |
-
# df_m3exam = df_m3exam.copy()[show_columns]
|
43 |
-
# df_mmlu = df_mmlu.copy()[show_columns]
|
44 |
-
df_avg_init = df_avg.copy()[df_avg['type'] == '🔶 chat'][show_columns]
|
45 |
-
df_m3exam_init = df_m3exam.copy()[df_m3exam['type'] == '🔶 chat'][show_columns]
|
46 |
-
df_mmlu_init = df_mmlu.copy()[df_mmlu['type'] == '🔶 chat'][show_columns]
|
47 |
-
|
48 |
-
# data_types = ['number', 'str', 'markdown','str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number']
|
49 |
-
# map_columns = {'rank':'R','type':'type', 'Model':'Model','open?':'open?', 'avg_sea':'avg_sea ⬇️', 'en':'en', 'zh':'zh', 'id':'id', 'th':'th', 'vi':'vi', 'avg':'avg', 'params':'params(B)'}
|
50 |
-
# map_types = {'rank': 'number', 'type': 'str', 'Model': 'markdown', 'open?': 'str', 'avg_sea': 'number', 'en': 'number', 'zh': 'number', 'id': 'number', 'th': 'number', 'vi': 'number', 'avg': 'number', 'params': 'number'}
|
51 |
-
# Searching and filtering
|
52 |
-
def update_table(
|
53 |
-
hidden_df: pd.DataFrame,
|
54 |
-
# columns: list,
|
55 |
-
type_query: list,
|
56 |
-
open_query: list,
|
57 |
-
# precision_query: str,
|
58 |
-
# size_query: list,
|
59 |
-
# show_deleted: bool,
|
60 |
-
query: str,
|
61 |
-
):
|
62 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
63 |
-
# filtered_df = filter_queries(query, filtered_df)
|
64 |
-
# df = select_columns(filtered_df, columns)
|
65 |
-
filtered_df = hidden_df.copy()
|
66 |
-
|
67 |
-
filtered_df = filtered_df[filtered_df['type'].isin(type_query)]
|
68 |
-
map_open = {'open': 'Y', 'closed': 'N'}
|
69 |
-
filtered_df = filtered_df[filtered_df['open?'].isin([map_open[o] for o in open_query])]
|
70 |
-
filtered_df = filter_queries(query, filtered_df)
|
71 |
-
# filtered_df = filtered_df[[map_columns[k] for k in columns]]
|
72 |
-
# deduplication
|
73 |
-
# df = df.drop_duplicates(subset=["Model"])
|
74 |
-
df = filtered_df.drop_duplicates()
|
75 |
-
df = df[show_columns]
|
76 |
-
return df
|
77 |
-
|
78 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
79 |
-
return df[(df['Model'].str.contains(query, case=False))]
|
80 |
-
|
81 |
-
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
82 |
-
final_df = []
|
83 |
-
if query != "":
|
84 |
-
queries = [q.strip() for q in query.split(";")]
|
85 |
-
for _q in queries:
|
86 |
-
_q = _q.strip()
|
87 |
-
if _q != "":
|
88 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
89 |
-
if len(temp_filtered_df) > 0:
|
90 |
-
final_df.append(temp_filtered_df)
|
91 |
-
if len(final_df) > 0:
|
92 |
-
filtered_df = pd.concat(final_df)
|
93 |
-
|
94 |
-
return filtered_df
|
95 |
|
96 |
demo = gr.Blocks(css=custom_css)
|
97 |
with demo:
|
@@ -100,222 +48,68 @@ with demo:
|
|
100 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
101 |
|
102 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
103 |
-
with gr.
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
#
|
117 |
-
#
|
118 |
-
|
119 |
-
# interactive=True,
|
120 |
-
# )
|
121 |
-
|
122 |
-
# with gr.Row():
|
123 |
-
with gr.Column():
|
124 |
-
type_query = gr.CheckboxGroup(
|
125 |
-
choices=["🟢 base", "🔶 chat"],
|
126 |
-
value=["🔶 chat" ],
|
127 |
-
label="model types to show",
|
128 |
-
elem_id="type-select",
|
129 |
-
interactive=True,
|
130 |
-
)
|
131 |
-
with gr.Column():
|
132 |
-
open_query = gr.CheckboxGroup(
|
133 |
-
choices=["open", "closed"],
|
134 |
-
value=["open", "closed"],
|
135 |
-
label="open-source or closed-source models?",
|
136 |
-
elem_id="open-select",
|
137 |
-
interactive=True,
|
138 |
-
)
|
139 |
-
|
140 |
-
leaderboard_table = gr.components.Dataframe(
|
141 |
-
value=df_avg_init,
|
142 |
-
# [[map_columns[k] for k in shown_columns.value]],
|
143 |
-
# value=leaderboard_df[
|
144 |
-
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
145 |
-
# + shown_columns.value
|
146 |
-
# + [AutoEvalColumn.dummy.name]
|
147 |
-
# ],
|
148 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
149 |
-
datatype=TYPES,
|
150 |
-
elem_id="leaderboard-table",
|
151 |
-
interactive=False,
|
152 |
-
# datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
|
153 |
-
# datatype=[map_types[k] for k in shown_columns.value],
|
154 |
-
visible=True,
|
155 |
-
# column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"],
|
156 |
-
)
|
157 |
-
|
158 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
159 |
-
value=df_avg,
|
160 |
-
# elem_id="leaderboard-table",
|
161 |
-
interactive=False,
|
162 |
-
visible=False,
|
163 |
-
)
|
164 |
-
|
165 |
-
search_bar.submit(
|
166 |
-
update_table,
|
167 |
-
[
|
168 |
-
# df_avg,
|
169 |
-
hidden_leaderboard_table_for_search,
|
170 |
-
# shown_columns,
|
171 |
-
type_query,
|
172 |
-
open_query,
|
173 |
-
# filter_columns_type,
|
174 |
-
# filter_columns_precision,
|
175 |
-
# filter_columns_size,
|
176 |
-
# deleted_models_visibility,
|
177 |
-
search_bar,
|
178 |
],
|
179 |
-
leaderboard_table,
|
180 |
-
)
|
181 |
-
for selector in [type_query, open_query]:
|
182 |
-
selector.change(
|
183 |
-
update_table,
|
184 |
-
[
|
185 |
-
# df_avg,
|
186 |
-
hidden_leaderboard_table_for_search,
|
187 |
-
# shown_columns,
|
188 |
-
type_query,
|
189 |
-
open_query,
|
190 |
-
# filter_columns_type,
|
191 |
-
# filter_columns_precision,
|
192 |
-
# filter_columns_size,
|
193 |
-
# deleted_models_visibility,
|
194 |
-
search_bar,
|
195 |
-
],
|
196 |
-
leaderboard_table,
|
197 |
-
)
|
198 |
-
with gr.TabItem("M3Exam", elem_id="llm-benchmark-M3Exam", id=1):
|
199 |
-
with gr.Row():
|
200 |
-
with gr.Column():
|
201 |
-
search_bar = gr.Textbox(
|
202 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
203 |
-
show_label=False,
|
204 |
-
elem_id="search-bar",
|
205 |
-
)
|
206 |
-
with gr.Column():
|
207 |
-
type_query = gr.CheckboxGroup(
|
208 |
-
choices=["🟢 base", "🔶 chat"],
|
209 |
-
value=["🔶 chat" ],
|
210 |
-
label="model types to show",
|
211 |
-
elem_id="type-select",
|
212 |
-
interactive=True,
|
213 |
-
)
|
214 |
-
with gr.Column():
|
215 |
-
open_query = gr.CheckboxGroup(
|
216 |
-
choices=["open", "closed"],
|
217 |
-
value=["open", "closed"],
|
218 |
-
label="open-source or closed-source models?",
|
219 |
-
elem_id="open-select",
|
220 |
-
interactive=True,
|
221 |
-
)
|
222 |
-
|
223 |
-
leaderboard_table = gr.components.Dataframe(
|
224 |
-
value=df_m3exam_init,
|
225 |
-
interactive=False,
|
226 |
-
visible=True,
|
227 |
-
# datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
|
228 |
datatype=TYPES,
|
|
|
229 |
)
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
[
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
244 |
],
|
245 |
-
leaderboard_table,
|
246 |
-
)
|
247 |
-
for selector in [type_query, open_query]:
|
248 |
-
selector.change(
|
249 |
-
update_table,
|
250 |
-
[
|
251 |
-
hidden_leaderboard_table_for_search,
|
252 |
-
type_query,
|
253 |
-
open_query,
|
254 |
-
search_bar,
|
255 |
-
],
|
256 |
-
leaderboard_table,
|
257 |
-
)
|
258 |
-
|
259 |
-
with gr.TabItem("MMLU", elem_id="llm-benchmark-MMLU", id=2):
|
260 |
-
with gr.Row():
|
261 |
-
with gr.Column():
|
262 |
-
search_bar = gr.Textbox(
|
263 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
264 |
-
show_label=False,
|
265 |
-
elem_id="search-bar",
|
266 |
-
)
|
267 |
-
with gr.Column():
|
268 |
-
type_query = gr.CheckboxGroup(
|
269 |
-
choices=["🟢 base", "🔶 chat"],
|
270 |
-
value=["🔶 chat" ],
|
271 |
-
label="model types to show",
|
272 |
-
elem_id="type-select",
|
273 |
-
interactive=True,
|
274 |
-
)
|
275 |
-
with gr.Column():
|
276 |
-
open_query = gr.CheckboxGroup(
|
277 |
-
choices=["open", "closed"],
|
278 |
-
value=["open", "closed"],
|
279 |
-
label="open-source or closed-source models?",
|
280 |
-
elem_id="open-select",
|
281 |
-
interactive=True,
|
282 |
-
)
|
283 |
-
|
284 |
-
leaderboard_table = gr.components.Dataframe(
|
285 |
-
value=df_mmlu_init,
|
286 |
-
interactive=False,
|
287 |
-
visible=True,
|
288 |
-
# datatype=['number', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'],
|
289 |
datatype=TYPES,
|
|
|
290 |
)
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
[
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
305 |
],
|
306 |
-
|
|
|
307 |
)
|
308 |
-
for selector in [type_query, open_query]:
|
309 |
-
selector.change(
|
310 |
-
update_table,
|
311 |
-
[
|
312 |
-
hidden_leaderboard_table_for_search,
|
313 |
-
type_query,
|
314 |
-
open_query,
|
315 |
-
search_bar,
|
316 |
-
],
|
317 |
-
leaderboard_table,
|
318 |
-
)
|
319 |
|
320 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
321 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
3 |
import os
|
4 |
from huggingface_hub import snapshot_download, login
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
+
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
|
7 |
|
8 |
from src.display.about import (
|
9 |
CITATION_BUTTON_LABEL,
|
|
|
40 |
# Load the data from the csv file
|
41 |
csv_path = f'{EVAL_RESULTS_PATH}/SeaExam_results_20240808.csv'
|
42 |
df_m3exam, df_mmlu, df_avg = load_data(csv_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
demo = gr.Blocks(css=custom_css)
|
45 |
with demo:
|
|
|
48 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
49 |
|
50 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
51 |
+
with gr.Tab("🏅 Overall"):
|
52 |
+
Leaderboard(
|
53 |
+
value=df_avg[show_columns],
|
54 |
+
select_columns=SelectColumns(
|
55 |
+
default_selection=show_columns,
|
56 |
+
cant_deselect=["R", "Model"],
|
57 |
+
label="Select Columns to Display:",
|
58 |
+
),
|
59 |
+
search_columns=["Model"],
|
60 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
61 |
+
filter_columns=[
|
62 |
+
"type",
|
63 |
+
"open?",
|
64 |
+
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"),
|
65 |
+
# ColumnFilter("Flagged", type="boolean", default=False),
|
66 |
+
ColumnFilter("params(B)", default=[7, 10]),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
datatype=TYPES,
|
69 |
+
# column_widths=["2%", "33%"],
|
70 |
)
|
71 |
+
|
72 |
+
with gr.Tab("M3Exam"):
|
73 |
+
Leaderboard(
|
74 |
+
value=df_m3exam[show_columns],
|
75 |
+
select_columns=SelectColumns(
|
76 |
+
default_selection=show_columns,
|
77 |
+
cant_deselect=["R", "Model"],
|
78 |
+
label="Select Columns to Display:",
|
79 |
+
),
|
80 |
+
search_columns=["Model"],
|
81 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
82 |
+
filter_columns=[
|
83 |
+
"type",
|
84 |
+
"open?",
|
85 |
+
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"),
|
86 |
+
# ColumnFilter("Flagged", type="boolean", default=False),
|
87 |
+
ColumnFilter("params(B)", default=[7, 10]),
|
88 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
datatype=TYPES,
|
90 |
+
# column_widths=["2%", "33%"],
|
91 |
)
|
92 |
|
93 |
+
with gr.Tab("MMLU"):
|
94 |
+
Leaderboard(
|
95 |
+
value=df_mmlu[show_columns],
|
96 |
+
select_columns=SelectColumns(
|
97 |
+
default_selection=show_columns,
|
98 |
+
cant_deselect=["R", "Model"],
|
99 |
+
label="Select Columns to Display:",
|
100 |
+
),
|
101 |
+
search_columns=["Model"],
|
102 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
103 |
+
filter_columns=[
|
104 |
+
"type",
|
105 |
+
"open?",
|
106 |
+
# ColumnFilter("MOE", type="boolean", default=False, label="MoE"),
|
107 |
+
# ColumnFilter("Flagged", type="boolean", default=False),
|
108 |
+
ColumnFilter("params(B)", default=[7, 10]),
|
109 |
],
|
110 |
+
datatype=TYPES,
|
111 |
+
# column_widths=["2%", "33%"],
|
112 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
115 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
requirements.txt
CHANGED
@@ -3,6 +3,7 @@ black==23.11.0
|
|
3 |
click==8.1.3
|
4 |
datasets==2.14.5
|
5 |
gradio==4.4.0
|
|
|
6 |
gradio_client==0.7.0
|
7 |
huggingface-hub>=0.18.0
|
8 |
matplotlib==3.7.1
|
|
|
3 |
click==8.1.3
|
4 |
datasets==2.14.5
|
5 |
gradio==4.4.0
|
6 |
+
gradio-leaderboard==0.0.11
|
7 |
gradio_client==0.7.0
|
8 |
huggingface-hub>=0.18.0
|
9 |
matplotlib==3.7.1
|
src/leaderboard/load_results.py
CHANGED
@@ -28,7 +28,8 @@ def make_clickable_model(model_name, link=None):
|
|
28 |
if len(model_name.split("/")) == 2:
|
29 |
link = "https://huggingface.co/" + model_name
|
30 |
return (
|
31 |
-
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
|
|
32 |
)
|
33 |
return model_name
|
34 |
|
|
|
28 |
if len(model_name.split("/")) == 2:
|
29 |
link = "https://huggingface.co/" + model_name
|
30 |
return (
|
31 |
+
# f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
|
32 |
+
f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name.split("/")[-1]}</a>'
|
33 |
)
|
34 |
return model_name
|
35 |
|