File size: 5,490 Bytes
203c3cd
7151461
9d1731e
73933cb
 
 
 
 
 
 
9d1731e
 
 
 
 
 
 
 
 
73933cb
531980d
73933cb
 
9d1731e
 
 
 
 
 
73933cb
9d1731e
73933cb
 
9d1731e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73933cb
 
 
 
 
 
 
 
 
 
 
9d1731e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73933cb
 
9d1731e
 
 
 
 
 
73933cb
 
9d1731e
73933cb
 
9d1731e
 
73933cb
9d1731e
 
73933cb
9d1731e
73933cb
 
 
9d1731e
73933cb
 
 
9d1731e
73933cb
 
 
 
 
 
 
 
 
 
9d1731e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73933cb
 
9d1731e
 
 
 
 
73933cb
9d1731e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import time
import transformers
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from io import BytesIO
from urllib.request import urlopen
import librosa
import os, json
from sys import argv
from vllm import LLM, SamplingParams
import vllm

from huggingface_hub import login
TOKEN = os.environ.get("TOKEN", None)
login(token=TOKEN)

print("transformers version:", transformers.__version__)
print("vllm version:", vllm.__version__)
print("gradio version:", gr.__version__)


def load_model_processor(model_path):
    processor = AutoProcessor.from_pretrained(model_path)
    llm = LLM(
        model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,  
        enforce_eager=True,  device = "cuda",
        limit_mm_per_prompt={"audio": 5},
    )
    return llm, processor

model_path1 = "SeaLLMs/SeaLLMs-Audio-7B"
model1, processor1 = load_model_processor(model_path1)

def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
    if text == None:
        conversation = [
            {"role": "user", "content": [
                {"type": "audio", "audio_url": audio_url},
            ]},]
    elif audio_url == None:
        conversation = [
            {"role": "user", "content": [
                {"type": "text", "text": text},
           ]},]
    else:
        conversation = [
            {"role": "user", "content": [
                {"type": "audio", "audio_url": audio_url},
                {"type": "text", "text": text},
           ]},]

    text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
    audios = []
    for message in conversation:
        if isinstance(message["content"], list):
            for ele in message["content"]:
                if ele["type"] == "audio":
                    if ele['audio_url'] != None:
                        audios.append(librosa.load(
                            ele['audio_url'], 
                            sr=processor.feature_extractor.sampling_rate)[0]
                        )

    sampling_params = SamplingParams(
        temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
        stop_token_ids=[],
    )

    input = {
            'prompt': text,
            'multi_modal_data': {
                'audio': [(audio, 16000) for audio in audios]
            }
            }

    output = model.generate([input], sampling_params=sampling_params)[0]
    response = output.outputs[0].text
    return response

def clear_inputs():
    return None, "", ""

def compare_responses(audio_url, text):
    response1 = response_to_audio(audio_url, text, model1, processor1)
    return response1

with gr.Blocks() as demo:
    # gr.Markdown(f"Evaluate {model_path1}")
    # gr.Markdown("""<p align="center"><img src="images/seal_logo.png" style="height: 80px"/><p>""")
    # gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False)
    # gr.Markdown("""<center><font size=8>SeaLLMs-Audio Demo</center>""")
    gr.Markdown("""# SeaLLMs-Audio Demo""")
    gr.Markdown(
        """\
<center><font size=4>This WebUI is based on SeaLLMs-Audio-7B-Chat, developed by Alibaba DAMO Academy.<br>
    You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
    For the input, you can input <b>audio and/or text</center>.""")

    # Links with proper formatting
    gr.Markdown(
        """<center><font size=4>
        <a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Website]</a> &nbsp; 
        <a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Model🤗]</a> &nbsp; 
        <a href="https://github.com/liuchaoqun/SeaLLMs-Audio">[Github]</a>
        </center>""",
    )

    # gr.Markdown(insturctions)
    # with gr.Row():
    #     with gr.Column():
    #         temperature = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Temperature")
    #     with gr.Column():
    #         top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
    #     with gr.Column():
    #         repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
    
    with gr.Row():
        with gr.Column():
            # mic_input = gr.Microphone(label="Record Audio", type="filepath", elem_id="mic_input")
            mic_input = gr.Audio(sources = ['upload', 'microphone'], label="Record Audio", type="filepath", elem_id="mic_input")
        with gr.Column():
            additional_input = gr.Textbox(label="Text Input")
    
    # Button to trigger the function
    with gr.Row():
        btn_submit = gr.Button("Submit")
        btn_clear = gr.Button("Clear")

    with gr.Row():
        output_text1 = gr.Textbox(label=model_path1.split('/')[-1], interactive=False, elem_id="output_text1")

    btn_submit.click(
        fn=compare_responses,
        inputs=[mic_input, additional_input],
        outputs=[output_text1],
    )

    btn_clear.click(
        fn=clear_inputs,
        inputs=None,
        outputs=[mic_input, additional_input, output_text1],
        queue=False,
    )


# demo.launch(
#     share=False,
#     inbrowser=True,
#     server_port=7950,
#     server_name="0.0.0.0",
#     max_threads=40
# )

demo.launch(share=True)
demo.queue(default_concurrency_limit=40).launch(share=True)