Spaces:
Sleeping
Sleeping
File size: 6,299 Bytes
b2b40b3 2360578 9b424cf 2360578 4980e3a 2360578 aec1ff0 5cda5a4 7f53bff 4980e3a 7f53bff 2360578 c11d9db 3d2c1c1 2360578 aec1ff0 2360578 bbecffd aec1ff0 2360578 aec1ff0 2360578 aec1ff0 217ee9a 2360578 bbecffd df69f7c dde1006 df69f7c dde1006 df69f7c de5cc61 bbecffd dde1006 df69f7c 2360578 aec1ff0 d96f995 aec1ff0 2360578 aec1ff0 2360578 b259230 bc3efba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import time
import transformers
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from io import BytesIO
from urllib.request import urlopen
import librosa
import os, json
from sys import argv
from vllm import LLM, SamplingParams
import vllm
from huggingface_hub import login
TOKEN = os.environ.get("TOKEN", None)
login(token=TOKEN)
print("transformers version:", transformers.__version__)
print("vllm version:", vllm.__version__)
print("gradio version:", gr.__version__)
def load_model_processor(model_path):
processor = AutoProcessor.from_pretrained(model_path)
llm = LLM(
model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
enforce_eager=True, device = "cuda",
limit_mm_per_prompt={"audio": 5},
)
return llm, processor
model_path1 = "SeaLLMs/SeaLLMs-Audio-7B"
model1, processor1 = load_model_processor(model_path1)
def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
if text == None:
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": audio_url},
]},]
elif audio_url == None:
conversation = [
{"role": "user", "content": [
{"type": "text", "text": text},
]},]
else:
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": audio_url},
{"type": "text", "text": text},
]},]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
if ele['audio_url'] != None:
audios.append(librosa.load(
ele['audio_url'],
sr=processor.feature_extractor.sampling_rate)[0]
)
sampling_params = SamplingParams(
temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
stop_token_ids=[],
)
input = {
'prompt': text,
'multi_modal_data': {
'audio': [(audio, 16000) for audio in audios]
}
}
output = model.generate([input], sampling_params=sampling_params)[0]
response = output.outputs[0].text
return response
def clear_inputs():
return None, "", ""
def compare_responses(audio_url, text):
response1 = response_to_audio(audio_url, text, model1, processor1)
return response1
with gr.Blocks() as demo:
# gr.Markdown(f"Evaluate {model_path1}")
gr.HTML("""<p align="center"><img src="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/static/images/seallm-audio-logo.png" style="height: 80px"/><p>""")
# gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False)
gr.HTML("""<h1 align="center" id="space-title">SeaLLMs-Audio-Demo</h1>""")
# gr.Markdown(
# """\
# <center><font size=4>This WebUI is based on SeaLLMs-Audio-7B, developed by Alibaba DAMO Academy.<br>
# You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
# For the input, you can input <b>audio and/or text</center>.""")
# # Links with proper formatting
# gr.Markdown(
# """<center><font size=4>
# <a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Website]</a>
# <a href="https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B">[Model🤗]</a>
# <a href="https://github.com/DAMO-NLP-SG/SeaLLMs-Audio">[Github]</a>
# </center>""",
# )
gr.HTML(
"""<div style="text-align: center; font-size: 16px;">
This WebUI is based on <a href="https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B">SeaLLMs-Audio-7B</a>, developed by Alibaba DAMO Academy.<br>
You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
For the input, you can provide <b>audio and/or text</b>.
</div>"""
)
gr.HTML(
"""<div style="text-align: center; font-size: 16px;">
<a href="https://DAMO-NLP-SG.github.io/SeaLLMs-Audio/">[Website]</a>
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-Audio-7B">[Model🤗]</a>
<a href="https://github.com/DAMO-NLP-SG/SeaLLMs-Audio">[Github]</a>
</div>"""
)
# gr.Markdown(insturctions)
# with gr.Row():
# with gr.Column():
# temperature = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Temperature")
# with gr.Column():
# top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
# with gr.Column():
# repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
with gr.Row():
with gr.Column():
# mic_input = gr.Microphone(label="Record Audio", type="filepath", elem_id="mic_input")
mic_input = gr.Audio(sources = ['upload', 'microphone'], label="Record Audio", type="filepath", elem_id="mic_input")
with gr.Column():
additional_input = gr.Textbox(label="Text Input")
# Button to trigger the function
with gr.Row():
btn_submit = gr.Button("Submit")
btn_clear = gr.Button("Clear")
with gr.Row():
output_text1 = gr.Textbox(label=model_path1.split('/')[-1], interactive=False, elem_id="output_text1")
btn_submit.click(
fn=compare_responses,
inputs=[mic_input, additional_input],
outputs=[output_text1],
)
btn_clear.click(
fn=clear_inputs,
inputs=None,
outputs=[mic_input, additional_input, output_text1],
queue=False,
)
# demo.launch(
# share=False,
# inbrowser=True,
# server_port=7950,
# server_name="0.0.0.0",
# max_threads=40
# )
demo.launch(share=True)
demo.queue(default_concurrency_limit=40).launch(share=True)
|